
Developer guide

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

Introduction
The objective of this document is to provide examples and hints on how to add new products in a Syntool
portal and how to activate some non-obvious features offered by the application.

Please note that this guide uses some paths and URLs from the installation manual.

The last sections of this guide cover a large number of unrelated subjects, so you should use the search
functionality of your PDF reader to find keywords if you are looking for specific information.

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

Conversion
The converter reads raw files in various formats, extracts the data that must be displayed in the Syntool
portal and saves it along with some metadata in a GeoTIFF file.

The generated GeoTIFF must contain the following global metadata:

product_name a string that identifies the product (e.g.
"GlobCurrent_L4_geostrophic_nrt")

name a string which identifies the granule (must be unique within the product).
Usually built using the name of the input file, for example:
"20170414000000-GLOBCURRENT-L4-CURgeo_0m-ALT_OI_NRT-
v03.0-fv01.0"

datetime a string which provides the central datetime of the temporal coverage for the
granule. Must be provided with the YYYY-mm-ddTHH:MM:SS format (e.g.
"2017-04-14T00:00:00")

time_range two strings separated by a single space that give the span of the temporal
coverage around the central datetime. Each string must be composed of an
integer value with a time unit (possible units: d | h | m | s | ms, respectively
days | hours | minutes | seconds | milliseconds). For example:
"-12h" "+12h"

Each band of the GeoTIFF must also provide two metadata (self-describing):

• units

• description

Ad-hoc script
A simple way to start is to write a Python (version 2.7) script which contains:

• a method which takes an input path and an output path

• a main "method" so that the script can be called directly

You can use the following as a template:

-*- encoding: utf-8 -*-
import logging

logger = logging.getLogger(__name__)

def convert_data(input_path, output_path):
 """Convert input data into a GeoTIFF file containing the metadata
 expected by syntool-ingestor"""

 logger.debug('Converting {} into {}'.format(input_path, output_path))

if '__main__' == __name__:
 import sys

 # Setup logging
 main_logger = logging.getLogger()

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

 main_logger.handlers = []
 handler = logging.StreamHandler()
 handler.setLevel(logging.DEBUG)
 main_logger.addHandler(handler)
 main_logger.setLevel(logging.DEBUG)

 input_path = sys.argv[1]
 output_path = sys.argv[2]

 convert_data(input_path, output_path)

The syntool_converter Python package provides some helper methods to create the GeoTIFF files
while making sure that the metadata are in the expected format.

For a more detailed description of the conversion process, you can refer to the comments in the
https://ftp.odl.bzh/odl/syntool/reader_skeleton.py file.

The syntool_converter Python package also contains a large number of readers that can be used as
a base for your own readers.

Integration with syntool-converter
Once the ad-hoc script generates GeoTIFF files and you are satisfied with the result, you can either use
the script "as is" or package it so that other users may benefit from it.

syntool-converter includes a rudimentary mechanism to add readers without actually modifying the
syntool_converter Python package: it uses a configuration file to define the available readers and
reads the path of this configuration file in the SYNTOOL_CONVERTER_CONFIG environment variable.

The configuration file is written in JSON format and contains a single dictionary.

• The keys of the dictionary are the keywords you pass to the -t option of syntool-converter to
select the reader.

• The values are lists of two elements: the first element is the path of the Python module which
contains the reader (the argument you would pass to the import statement in Python) and the
second element is the name of the method which implements the conversion.

For example, with this JSON configuration file:

{ "keyword": ["path.to.python.module", "name_of_conversion_method"],
 ...
}

Calling syntool-converter -t keyword -o output_path -i input_path -opt foo=bar will
result in invoking a Python code similar to:

import path.to.python.module
path.to.python.module.name_of_conversion_method(input_path, output_path,
 foo=bar)

Note that the Python module for the reader must be in the PYTHONPATH otherwise it will not be possible to
import it. For an ad-hoc script which has not be packaged yet, it means that you will probably have to edit
PYTHONPATH when calling syntool-converter or it will not work:

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

https://ftp.odl.bzh/odl/syntool/reader_skeleton.py

PYTHONPATH=. \ # include current directory in PYTHONPATH
SYNTOOL_CONVERTER_CONFIG=config.json \ # override configuration file
syntool-converter -t myreader -o converted -i input_file -opt opt1=valueA

Note

The list of additional options that can be passed to the reader method with -opt is currently
hardcoded in the syntool-converter script. If you need to add an option which is not supported at
the moment, you will have to modify the code of syntool-converter or use the ad-hoc script directly.

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

Ingestion
The ingestor reads the GeoTIFF files generated by syntool-converter, transforms them into a
web-compatible representation (a pyramid of PNG tiles, a single PNG, a GeoJSON file, etc...) and extracts
the metadata required to feed the database.

Note

It can be difficult to get ingestion settings right from the get-go, so it is better to start with a single
GeoTIFF input file, then tweak options until the syntool-ingestor command produces a result and
follow the instructions to export data to MySQL and configure the web portal so you can actually
see the result of the ingestion process.

Configuration

In order to extract the data from the GeoTIFF and produce the web-compatible representation,
syntool-ingestor requires some hints about the GeoTIFF file:

• Format: for the current version of syntool-ingestor you should always use geotiff as input
format (it is the default value). It might accept other formats (NetCDF) in the future.

• Projection (pixels): although some information about the projection are already available in the
metadata of the GeoTIFF file, it is recommended to pass it directly to syntool-ingestor on the
command line as an EPSG code.

• Projection (angles): for GeoTIFF which contain vector fields, you must provide the EPSG code for
the projection wherein the angles are valid.

If the EPSG code is the same for angles and for the Syntool portal, the angle values are not
transformed during the ingestion process.

Otherwise syntool-ingestor will try to convert the angles so that they remain meaningful in the
output projection (only works if the projection for angles is EPSG 4326).

The user also needs to describe the expected output of the ingestion:

• Output format: syntool-ingestor uses plugins to generate the web-compatible representations.

These plugins are identified by a keyword that must be specified when invoking
syntool-ingestor on the command line.

The most common plugins are:

• raster generates a single PNG image from a 2D image

• rastertiles generates a pyramid of PNG tiles from a 2D image

• trajectorytiles generates a pyramid of PNG tiles from a 1D image (it rasterizes 1D data,
like an altimeter trace for example)

• vectorfield generates a PNG image wherein the color channels of each pixel describe the
modulus and angle of the vectors (and a third optional parameter)

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

• Output settings: arguments passed to the formatting plugins. Applicable values depend on the plugin
selected with the output format keyword.

The output settings listed below are the most used options:

• Generic settings

Option Description

with-shape either yes or no (defaults to yes if not specified or if another value is
provided). with-shape=no means that Syntool should consider that
the spatial coverage of the ingested data is equal or includes the
entire viewport of the portal. In this case no spatial filtering will be
applied on this granule and it will not be selectable by clicking on the
map (to avoid selecting them when trying to navigate on the map).

shape-tolerance the shape (contour) of the granule is stored in the database and is
used to filter search results on a spatial criterium (only granules
whose shape intersects the viewport of the portal will be returned).
The web portal sends many search requests, so this filtering
operation must be as fast as possible to maintain good performance.
Syntool generates the shape from the GCPs of the granule and the
result can contain hundreds of vertices. Computing intersections with
such complex shapes hurts the performance of the database, so the
shape-tolerance option can be used to simplify the shape by
replacing as many vertices as possible by a single one while keeping
the accuracy of the result within the tolerance range (expressed in
meters).

• Raster settings (keyword: raster)

resampling resampling option passed to GDAL when it warps the data (use either near,
bilinear or cubic)

warp-size Size (in pixels) of the output PNG file. Can be either a single integer value
(square image), or the width and height separated by the x character (e.g.
warp-size=1440x720)

• Raster tiles settings (keyword: rastertiles)

resampling resampling option passed to GDAL when it warps the data (use either
near, bilinear or cubic).

min-zoom syntool-ingestor will only produce tiles starting from this zoom
level (the top of the tiles pyramid is truncated).

max-zoom syntool-ingestor will only produce tiles up to this zoom level (the
base of the pyramid is truncated).

tile-resampling resampling method passed to the tool which produces tiles. Valid
values are nearest and antialias.

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

• Trajectory tiles settings (keyword: trajectorytiles)

resampling resampling option passed to GDAL when it warps the data (use
either near, bilinear or cubic).

min-zoom syntool-ingestor will only produce tiles starting from this
zoom level (the top of the tiles pyramid is truncated).

max-zoom syntool-ingestor will only produce tiles up to this zoom level
(the base of the pyramid is truncated).

linewidth-meter when rasterizing the 1D data, syntool-ingestor will try to
give it a width close to the value (in meters) passed to this option.

min-linewidth-pixel when rasterizing the 1D data, syntool-ingestor will give it a
width that is greater or equal to the value (in pixels) passed to
this option.

• Vector field settings (keyword: vectorfield)

resampling resampling option passed to GDAL when it warps the data (use either
near, bilinear or cubic)

resolution resolution (in "units of output projection" per pixel) of the output file. The
value can be a single numerical value (same horizontal and vertical
resolutions) or the resolutions along the horizontal axis and along the
vertical axis separated by the x character (e.g.
resolution=12500x25000)

modulus-band Index of the GeoTIFF band (GDAL starts indexing at 1) where the modulus
of the vectors are stored

scale-min Minimal value for the modulus (values below this threshold are truncated)

scale-max Maximal value for the modulus (values above this threshold are truncated)

angle-band Index of the GeoTIFF band (GDAL starts indexing at 1) where the angle of
the vectors are stored

color-band in case there is another parameter attached to the vector, index of the
GeoTIFF band (GDAL starts indexing at 1) where the parameter is stored

color-min Minimal value for the additional parameter (values below this threshold are
truncated)

color-max Maximal value for the additional parameter (values above this threshold
are truncated)

Warning

The max-zoom option with a relative value (prefixed by + or -) does not seem to work very well with
stereographic projections. You should start by using an absolute value, check that the ingestor
produces the expected output (i.e. the other options are all ok) and then switch to a relative
max-zoom value.

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

Processing the GeoTIFF files
The syntax to invoke the syntool-ingestor command is as follows:

syntool-ingestor --config 3857.cfg \
 --input-format IN_FMT \
 --input-options IN_KEY_N=IN_VALUE_N ... \
 --output-format OUT_FMT \
 --output-options OUT_KEY_N=OUT_VALUE_N ... \
 --output-dir INGESTED_DIR \
 GEOTIFF_PATH

The 3857.cfg file passed to the --config defines the projection to use for the output, the extent
associated with this projection (in projected coordinates) and the viewport of the web portal (in projected
coordinates).

For reference, here is the content of the 3857.cfg file used for most Syntool portals:

[portal]
projection = 3857
viewport = -20037508.34 -20037508.34 20037508.34 20037508.34
extent = -20037508.34 -20037508.34 20037508.34 20037508.34

Here is an example showing how the syntool-ingestor can be invoked to process a GeoTIFF file for
the Sentinel-1 SAR roughness product:

syntool-ingestor --config 3857.cfg \
 --input-format geotiff \
 --input-options projection=4326 \
 --output-format rastertiles \
 --output-options resampling=cubic \
 min-zoom=3 \
 max-zoom=+1 \
 shape-tolerance=1000 \
 --output-dir /mnt/syntool/ingested \
 "${input_geotiff_path}"

Once the processing is complete, you can check the output in the /mnt/syntool/ingested directory.

It must contain a directory whose name is built from the EPSG code of the output projection and the name
of the product (as it was spelled in the product_name metadata of the GeoTIFF file). For example:
3857_GlobCurrent_L4_geostrophic_nrt.

Note that some formatting plugins append a suffix to the product name. The vectorfield product adds
_vectorfield after the product name, which results in the creation of an output directory named
3857_GlobCurrent_L4_geostrophic_nrt_vectorfield.

Inside this directory you will find a subdirectory which has the same name as the granule (the name
metadata of the GeoTIFF file). And inside this subdirectory, a file named metadata.json which contains the
extracted metadata and either a single PNG file (for raster and vectorfield plugins) or a subdirectory
named tiles.zxy (for rastertiles and trajectorytiles plugins).

ingested
|- 3857_GlobCurrent_L4_geostrophic_nrt
| |- 20170414000000-GLOBCURRENT-L4-CURgeo_0m-ALT_OI_NRT-v03.0-fv01.0

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

| |- metadata.json
| |- tiles.zxy
| |- ...
. .
. .
. .
|- 3857_GlobCurrent_L4_geostrophic_nrt_vectorfield
 |- 20170414000000-GLOBCURRENT-L4-CURgeo_0m-ALT_OI_NRT-v03.0-fv01.0
 |- metadata.json
 |- vectorFieldLayer.png

Saving the configuration
Once you are satisfied with the result, copy the command-line options (--input-format,
--input-options, --output-format, --output-options) you used in a text file (called
MyProduct.cfg for example).

If you plan to ingest data automatically, it might be a good idea to put this file in a version control system
so you can keep track of the changes made to the ingestion options.

This file can also be used to reduce the size of the syntool-ingestor command, as the
--[in|out]put-[format|options] arguments can be replaced by
--options-file MyProduct.cfg:

cat > 3857_SAR_roughness.cfg <<EOF
--input-format geotiff \
--input-options projection=4326 \
--output-format rastertiles \
--output-options resampling=cubic min-zoom=3 max-zoom=+1 shape-tolerance=1000
EOF

Now the first command can be written like this:
syntool-ingestor --config 3857.cfg \
 --options-file 3857_SAR_roughness.cfg \
 --output-dir /mnt/syntool/ingested \
 "${input_geotiff_path}"

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

Export to MySQL

Generating SQL statements
Syntool provides the syntool-meta2sql command to produce SQL statements from the information
contained in the metadata.json files (produced by syntool-ingestor in the previous section).

The syntax of the command is as follows:

syntool-meta2sql OUTPUT.sql -- METADATA_PATH

Producing one SQL file for each metadata.json is not very efficient if you process data frequently.

Instead you can generate an SQL file which includes the content of several metadata.json as long as they
all belong to the same product using the following syntax:

syntool-meta2sql --chunk_size=100 OUTPUT.sql -- METADATA1 METADATA2 ...

or if you already have a text file which contains a list of paths for metadata.json files:

cat LISTING.txt | syntool-meta2sql --chunk_size=100 OUTPUT.sql --

A more practical example using the find command:

find "${PRODUCT_DIR}" -mindepth 2 -maxdepth 2 -name "metadata.json" \
 | syntool-meta2sql --chunk_size=100 OUTPUT.sql --

Always use the --chunk_size option when generating a single SQL file from several metadata.json:
when it has several input files, syntool-meta2sql generates bulk INSERT statements which can get so big
that they saturate the statement buffer of the MySQL server. The --chunk_size limits the number of
rows inserted by a single statement to avoid this issue (100 seems to be a good value in most cases).

Finally, it is possible to pass the output of syntool-meta2sql directly to MySQL by specifying - (standard
output) as the output path:

find "${PRODUCT_DIR}" -mindepth 2 -maxdepth 2 -name "metadata.json" \
 | syntool-meta2sql --chunk_size=100 - -- \
 | mysql syntool

MySQL optimization
As no assumption can be made about the strategies enforced by the database administrator about security
and optimization, the SQL statements generated by syntool-meta2sql only create tables and rows.

Creating a composite index based on the two fields that define the time range (begin_datetime and
end_datetime) can improve performance by several orders of magnitude for tables that contain a lot of
entries (often the case with in-situ or L1/L2 satellite products).

If this is in line with the database administrator strategy, you should always create this index after inserting
the first granule of your new product in MySQL.

CREATE INDEX timerange ON `product_3857_MyProduct`(begin_datetime, end_datetime);

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

Web portal

Editing the configuration
As any error in the configuration of the portal will prevent all users from using it, it is recommended to
make a copy of /srv/http/syntool/index.html before changing anything.

cd /srv/http/syntool/
cp index.html index_backup.html

Now go to the directory where you saved the Syntool portal generator (~/syntool if you followed the
installation guide) and create a copy of the sample portal configuration:

cd ~/syntool
cp -r developer/portal developer/custom

In the developer/custom directory, you will find several HTML files which can be modified to change
the titlebar of the portal or include new elements in the header and the footer of the web page.

This directory also contains a config.json file where most of the portal configuration resides. Open this
file with your favorite text editor (vim) and look for the definition of an object called module.exports.

One of the properties of this object is named products and contains of list of JavaScript objects that
describe the products available in the portal.

For example, a raster tiles product:

{
 label: 'GlobCurrent geostrophic NRT',
 id: '3857_GlobCurrent_L4_geostrophic_nrt',
 type: 'ZXY',
 mapMinZoom: 3,
 mapMaxZoom: 12,
 selected: true,
 mustBeCurrent: false,
 colorbar: 'images/colorbars/3857_GlobCurrent_L4_total_hs_colorbar.png',
 opacity: 0.8,
 stackLevel: 100,
 tileOrigin: tileOrigin,
 tileSize: tileSize,
},

or for a vectorfield product:

{
 label: 'Geostrophic surface current streamlines (Globcurrent)',
 id: '3857_GlobCurrent_L4_geostrophic_vectorfield',
 type: 'STREAMLINES',
 selected: true,
 mustBeCurrent: true,
 opacity: 0.60,
 stackLevel: 120,
 fields: {
 modulus: {

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

 channel: 0,
 min: 0,
 max: 0,
 },
 angle: {
 channel: 1,
 min: 0,
 max: 360,
 },
 },
 palette: {
 field: 'modulus',
 uniform: '#FFFFFF',
 },
},

Copy one of these product configurations (the one which matches best with your new product) at the end
of the products list.

Change the label and replace the value of the id field with the actual identifier for your product (the
name of the directory located directly under /mnt/syntool/ingested, where the ingestion results are
stored).

Once your are done with the edition of this file, regenerate the portal with the following commands:

./developer/generate.sh \
 --portal ./developer/custom /srv/http/syntool/index.html "Custom portal"

You can check that everything is working fine by opening the following URL in your web browser:
http://555.666.777.888/

The changes should be visible immediately, but some web browsers implement a very aggressive caching
strategy so if the content of the portal does not mirror the changes you made in the configuration, try to
clear the browser cache and reload the page.

Please refer to the portal configuration document for an in-depth description of the available settings and
options.

Adding a colorbar
The colorbars displayed in Syntool portals are just PNG images, you can generate them manually as long
as you respect the width constraint (the image must have a width of 320 pixels).

A command named syntool-colorbar can also be used to produce the colorbar that will be displayed
in the Syntool portal. It is part of the syntool_converter Python package installed on the processing
machine.

This command has been developed to handle specific cases, so its interface may not be intuitive: some
options are mutually exclusive, others must be used together, but the help message does not provide this
information...

Common arguments:

Argument Description

-o the path of the output directory (will be created if it does not exist yet)

-p used to generate the name of the output image

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

http://555.666.777.888/

-v the label displayed below the colormap

-u the unit displayed between parenthesis after the label

-m a keyword which identifies the colormap to include in the result (see --help to get the list
of supported values)

--min the lower bound for the numerical ticks

--max the upper bound for the numerical ticks

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

Here are some examples showing how to generate a colorbar with syntool-colorbar for specific
cases:

• When colors only have a meaning at the granule level (per-granule min/max instead of min/max
shared by all the granules that belong to the product), use the --relative option:

syntool-colorbar -o /OUTPUT -p "per_granule" -v "parameter" -u "dB" \
 -m rainbow --relative

It generates the /OUTPUT/per_granule_colorbar.png file:

• When you need numerical ticks with a fixed step, but want to make sure that the min and max values
are displayed, use --bin_size:

syntool-colorbar -o /OUTPUT -p "fixed_size_ticks" -v "parameter" -u "dB" \
 -m matplotlib_jet --min -4.3 --max 6 --bin_size 1.3

It generates the /OUTPUT/fixed_size_ticks_colorbar.png file:

• When you need a colorbar with discrete steps, use --discrete, --nbins and --bounds:

syntool-colorbar -o /OUTPUT -p discrete -v "depth" -u "m" \
 -m ibcso --min -6000 --max 0 --nbins 7 --discrete \
 --bounds -6000 -5000 -4000 -3000 -2000 -1000 0

It generates the /OUTPUT/discrete_colorbar.png file:

Once you have generated the PNG colorbar, copy it in the /srv/http/syntool/images/colorbars/
directory and edit (or add) the colorbar property of the product in the portal configuration.

This property takes the URL of a PNG image, including relative URLs. As the root of the HTTP server
installed on the web machine points to /srv/http/syntool, you can set the value of the colorbar to
/images/colorbars/discrete_colorbar.png for example.

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

Adding a description
There are two ways to provide a textual description for products in Syntool:

• with the description property: the text associated with this property will be displayed in a tooltip
when the user leaves the mouse cursor over the item of the products list (left side of the screen)
which corresponds to the product.

• with the infoURL property: this property takes the URL of a file which contains the description of the
product in Markdown format. The Markdown file will be loaded, parsed and formatted by the web
application and displayed in a popup when the user clicks on the product's information button.

For example:

The Multi-Sensor Precipitation Estimate (MPE) product consists of the
near-real-time rain rates in mm/hr for each Meteosat image in original
pixel resolution.

The algorithm is based on the combination of polar orbiter microwave
measurements and images in the Meteosat IR channel by a so-called blending
technique.

The MPE is most suitable for convective precipitation.

Applications and Users: Operational weather forecasting in areas with poor
or no radar coverage, especially in Africa and Asia.

 * [EUMETSAT website](https://www.eumetsat.int/website/home/index.html)

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

Side notes

Locations and trajectories
The trajectorytiles plugin of the ingestor generates tiles by rasterizing the 1D data. But PNG tiles is
not the only way to represent this type of data in Syntool, and it is not always possible to generate a
meaningful raster (self-intersecting trajectories for example).

Syntool provides a way to build interactive features on the map by reading the coordinates from a
GeoJSON file.

Creating such features is very costly in terms of performance, so it is only used when the product
resolution is low and/or when the number of granules to display simultaneously on the screen is limited.

Syntool is also able to render pictograms at specific locations, to display the position of moored buoys for
example. For this kind of product, no GeoJSON is required, the location is read directly from the shape
stored in the database.

The recommended way to convert/ingest these kinds of data is to write a script which reads the raw data
file and produces the metadata.json (and geojson.json for trajectories) files directly.

metadata.json files contain a dictionary with (at least) the following entries:

Key Value

product Name of the product (equivalent to the product_name metadata in
GeoTIFF files)

syntool_id Identifier of the product (usually the product name prefixed with the EPSG
code and an underscore)

dataset Identifier for the granule (equivalent to the name metadata in GeoTIFF files)

begin_datetime Start of the temporal coverage in YYYY-mm-dd HH:MM:SS format

end_datetime End of the temporal coverage in YYYY-mm-dd HH:MM:SS format

output_type Set to 'LOCATION' or 'TRAJECTORY'

min_zoom_level Only used for raster products, set it to 0

max_zoom_level Only used for raster products, set it to 0

resolutions Syntool does not support multiple resolutions for 1D data representations,
set it to an empty list: []

bbox_str Bounding box of the granule, defined as a polygon in WKT format using
coordinates in the output projection

shape_str A geometry in WKT format using coordinates in the projection. See below
for more details

• Locations

• shape_str must contain a point in WKT format: POINT(x y), with x and y expressed in the
output projection

• bbox_str must be a valid polygon, not a point, so it is necessary to add an artificial margin.

For example:

wkt_polygon = 'POLYGON(({} {},{} {},{} {},{} {},{} {}))'
bbox_str = wkt_polygon.format(x - 0.1, y - 0.1,
 x + 0.1, y - 0.1,

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

 x + 0.1, y + 0.1,
 x - 0.1, y + 0.1,
 x - 0.1, y - 0.1)

• The portal configuration for this type of products should look like this:

{
 label: 'Moorings',
 id: '3857_moorings',
 type: 'MOORED',
 description: '',
 selected: false,
 mustBeCurrent: false,
 opacity: 1,
 stackLevel: 120,
 marker: {
 default: {
 externalGraphic: 'resources/mooring.png',
 graphicWidth: 28,
 graphicHeight: 28
 }
 },
},

marker contains the description of the pictogram displayed at the location of the granule (URL
and dimensions of the image to display).

• Trajectories

• shape_str: as explained before, Syntool sends a lot of queries to the database to list the
granules whose shape intersects the current viewport of the portal. As the actual shape of the
trajectories will already be stored in the GeoJSON file, it is recommended to define this property
using a shape which is easier to handle for the database.

For example, the enveloppe of the shape could be used, as long as it is defined as a WKT
polygon using coordinates in output projection. Even better, you should use the bounding box:
in this case bbox_str and shape_str will have the same value.

This method reduces the accuracy of the intersection tests, but improves the performances of
the webservice tremendously. So it is a trade-off, improving the user experience at the cost of
the precision in the intersection tests.

• Generating the GeoJSON file (which must be called geojson.json) can be quite difficult:

• you have to split the geometries around the International Date Line (at least for Web
Mercator projection)

• if you have a list of point with measurements associated with each point, you might want
to apply colors on your trajectory representation based on one of the measurements.

Syntool can only define one color per segment, so you will have to decide how the points
at each extremity of one segment will affect its color. One relatively simple way to handle
this is to make the assumption that each point contributes equally: you can then split
each segment into two and assign the color for each sub-segment based on the
measurement of the closest point.

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

This is obviously not accurate as the assumption regarding the radius of validity for the
measurement will be false in most case, but this is a necessary trade-off to avoid
performance issue in the web browser.

You can take a look at the geojson_trajectory.py plugin from the
syntool_ingestor Python package to get an example of implementation (it should be
located in syntool_ingestor/share/plugins/formatters/)

• The portal configuration for this kind of product should look like this (for a GeoJSON file
which contains measurements in a property named salinity):

{
 label: 'Surface drifters',
 id: '3857_surface_drifters',
 type: 'TRAJECTORIES',
 selected: false,
 colorbar: "images/colorbars/salinity_colorbar.png",
 mustBeCurrent: false,
 datasetWeight: 30,
 opacity: 1,
 stackLevel: 140,
 fields: {
 salinity: {
 channel: 'salinity',
 min: 32,
 max: 38,
 },
 },
 palette: {
 field: 'salinity',
 colormap: 'images/palettes/GMT_jet_saturated.cpt',
 },
},

Additional content (information, images, links)
External resources are displayed in the contextual menu which appears on the right side of the screen
when users select a granule.

This contextual menu is built dynamically:

1. the application sends a request to the webservice to list the external resources associated with the
selected granule

2. the webservice looks inside the directory which contains the granule data (i.e. the directory where the
metadata.json file is stored)

3. the webservice will load and parse all the *.ini files contained in the features subdirectory (if it
exists).

4. the webservice sends a response with the content of the files it managed to parse

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

In order to be accepted by the webservice, the ini files must at least:

• define a global section (which can remain empty)

• define at least one of the following sections: metadata, images, links

Each (key, value) couple under the metadata section will be displayed directly in the contextual menu

For the images section, each (key, value) couple will generate a link in the contextual menu. Clicking on
the link will display the picture directly in the application, in a dialog box.

The key will be used as label for the link and the value will be split (using $ as the delimiter) to obtain:

• the description of the image (shown in a tooltip when the mouse cursor remains still over the link for a
few seconds)

• the URL of the image

• the loading mode of the image: if it equals 1, the image is immediately loaded and displayed when
the user selects the granule. Otherwise nothing happends until the user clicks on the link. Note that
there can be only one image with autoload = 1.

For the links section, each (key, value) couple will generate a link in the contextual menu. Clicking on
the link will open the URL of the remote resource in the current tab (use right click > "open in a new tab" if
you don't want to leave Syntool).

The key will be used as label for the link and the value will be split (using $ as the delimiter) to obtain:

• the description of the remote resource (shown in a tooltip when the mouse cursor remains still over
the link for a few seconds)

• the URL of the remote resource

An example:

[global]

[metadata]
key1 = value1
key2 = value2

[images]
labelImage = imageDescription$https://server.tld/imageURL.png$1

[links]
labelLink = linkDescription$https://server.tld/linkURL

The majority of the plots displayed in Syntool (profiles, timeseries) are pre-generated images associated
with a granule using this mechanism.

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

Questions, feature requests and bugs
Please register and post your questions, feature requests and bug reports on the Syntool forum:
https://forum.oceandatalab.com/forum-5.html

Syntool → Develop and customize

OceanDataLab | syntool@oceandatalab.com | 2018-10-12

https://forum.oceandatalab.com/forum-5.html

	Introduction
	Conversion
	Ad-hoc script
	Integration with syntool-converter

	Ingestion
	Configuration
	Processing the GeoTIFF files
	Saving the configuration

	Export to MySQL
	Generating SQL statements
	MySQL optimization

	Web portal
	Editing the configuration
	Adding a colorbar
	Adding a description

	Side notes
	Locations and trajectories
	Additional content (information, images, links)

	Questions, feature requests and bugs

