SE

support to science element

Requirement Baseline (RB) Deliverable: D-10

Customer	ESA/ESRIN
ESA Contract Change Notice	4000105171/12/I-BG
No	
Document Reference	SMOSpluSTORM_EVOLU_RB_v1.3
Version/Rev	1.3
Date of Issue	13 Oct 2014

	Function	Name	Signature	Date
Prepared by/Lead Author	Project Manager & Consortium	Nicolas Reul IFREMER, Met Office, Ocean Datalab		13 oct 2014
Accepted by	ESA technical Officer	Craig Donlon		

2

1.	INTRODUCTION	4
1.1	Purpose and scope	4
1.2	Structure of This Document	4
2.	REFERENCE DOCUMENTS AND ACRONYMS	4
2.1	Applicable Documents (AD)	4
2.2	Reference Documents (RD)	5
2.3	Acronyms and abbreviations	7
2.4	Universal Resource Locators (URL)	9
3.	SUMMARY OF SMOS+STORM REQUIREMENTS	10
3.1	Overview	
3.2	Key Requirements and Objectives	
4.	DETAILED REQUIREMENTS	12
4.1 Win	Improve physical understanding, retrieval algorithms and product quality for SM	10S High
VV III	a speed products	12 12
т. Л	1.3 Form property retrieval capability from SMOS data	
т. Л	1.5 I ball property retrieval capability from 5405 tata	16
т.	1.4 Margad Multi-mission wind speed product Algorithm	
	1.4 Merged Multi-mission wind speed product Algorithm	
42	1.4 Merged Multi-mission wind speed product Algorithm	
4.2	1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases	
4.2 4. 4.	1.4 Merged Multi-mission wind speed product Algorithm	
4.2 4. 4. 4.	 1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases 2.1 Data Set collection and Preprocessing 2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog 2.3 SMOS STORM Product validation 	
4.2 4. 4. 4.	 1.4 Merged Multi-mission wind speed product Algorithm	
4.2 4. 4. 4.3	 1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases 2.1 Data Set collection and Preprocessing 2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog 2.3 SMOS STORM Product validation Applications in the domain of Ocean-Atmosphere Interactions 	
4.2 4.4 4. 4.3 4.3	 1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases 2.1 Data Set collection and Preprocessing 2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog 2.3 SMOS STORM Product validation Applications in the domain of Ocean-Atmosphere Interactions 3.1 Statistical Analysis: 	
4.2 4. 4. 4. 4.3 4. 4.	 1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases 2.1 Data Set collection and Preprocessing 2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog 2.3 SMOS STORM Product validation Applications in the domain of Ocean-Atmosphere Interactions 3.1 Statistical Analysis: 3.2 Impact on Drag Parameterization 	
4.2 4. 4. 4.3 4. 4. 4. 4.	 1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases 2.1 Data Set collection and Preprocessing 2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog 2.3 SMOS STORM Product validation Applications in the domain of Ocean-Atmosphere Interactions 3.1 Statistical Analysis: 3.2 Impact on Drag Parameterization 3.3 Impact on Ocean Responses to Storms. 	
4.2 4. 4. 4.3 4. 4. 4. 4. 4. 4.	 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases Data Set collection and Preprocessing Building and publishing of a SMOS HWS/BLEND HWS Storm catalog SMOS STORM Product validation SMOS STORM Product validation Statistical Analysis: Impact on Drag Parameterization Impact on Ocean Responses to Storms 	
4.2 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases 2.1 Data Set collection and Preprocessing 2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog 2.3 SMOS STORM Product validation Applications in the domain of Ocean-Atmosphere Interactions 3.1 Statistical Analysis: 3.2 Impact on Drag Parameterization 3.3 Impact on Ocean Responses to Storms. Applications in the domain of Numerical Weather Predictions	
4.2 4. 4. 4.3 4. 4. 4. 4. 4.4 4.4	 1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases 2.1 Data Set collection and Preprocessing. 2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog 2.3 SMOS STORM Product validation. Applications in the domain of Ocean-Atmosphere Interactions 3.1 Statistical Analysis: 3.2 Impact on Drag Parameterization 3.3 Impact on Ocean Responses to Storms. Applications in the domain of Numerical Weather Predictions 4.1 Statistical Analysis. 	
4.2 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	 1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases 2.1 Data Set collection and Preprocessing 2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog 2.3 SMOS STORM Product validation Applications in the domain of Ocean-Atmosphere Interactions 3.1 Statistical Analysis: 3.2 Impact on Drag Parameterization 3.3 Impact on Ocean Responses to Storms. Applications in the domain of Numerical Weather Predictions 4.1 Statistical Analysis 4.2 Assimilation 	
4.2 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 5	1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases 2.1 Data Set collection and Preprocessing. 2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog 2.3 SMOS STORM Product validation. Applications in the domain of Ocean-Atmosphere Interactions 3.1 Statistical Analysis: 3.2 Impact on Drag Parameterization 3.3 Impact on Ocean Responses to Storms. Applications in the domain of Numerical Weather Predictions 4.1 Statistical Analysis. 4.2 Assimilation 4.3 TC Verification	
4.2 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 5 4.6	1.4 Merged Multi-mission wind speed product Algorithm Generate & Validate SMOS High Wind Speed Product Databases 2.1 Data Set collection and Preprocessing. 2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog 2.3 SMOS STORM Product validation. Applications in the domain of Ocean-Atmosphere Interactions 3.1 Statistical Analysis: 3.2 Impact on Drag Parameterization 3.3 Impact on Ocean Responses to Storms. Applications in the domain of Numerical Weather Predictions 4.1 Statistical Analysis: 4.2 Assimilation 4.3 TC Verification Mean Real Time Requirements Promotion	

6. APPENDIX 1 SUMMARY DESCRIPTION OF ALL DATA PRODUCTS REQUIRED BY THE PROJECT		
6.1	SMOS L1B data	45
6.2 Fo	SMOS ECFI data for a given scene <i>i</i> , a series of geometrical and auxilliary geophysical parameter are determined ntenna cosine director coordinate ξ, η and include	46 at each 46
6.3	SMOS Geophysical Auxilliary Informations	
6.4	TC tracks	
6.5	ETC tracks	
6.6	AMSR-2 Data	50
6.7	SCATTEROMETER data	51
6.8	SFMR flight data	51
6.9	Altimeter SWH & Wind data	
6.10) Buoy WS data (NDBC, MeteoFrance,)	53
6.11	I TRMM	54
6.12	2 WindSat	55
6.13	3 SSMI/I F15,F16 & F17	56
6.14	4 SAR Wave data	57
6.15	5 Met Office model background fields	
6.16	5 SMOS wind speed	
6.17	7 Meteorological observations database	59
6.18	3 SST and sea ice analysis	
6.19	9 CLIPER (Climatology & Persistence)	60

1. Introduction

1.1 Purpose and scope

This document is the Requirement Baseline (RB) document of the Support To Science Element (STSE) SMOS+ STORM Evolution project. The **aim** of this document is to ensure that the project specification (work and products) is matched to the Statement of Work (SoW) [RD-1] and contract issued by ESA in terms of requirements and expectations.

1.2 Structure of This Document

This document is organized into the following sections:

- Section 1 is this section that outlines the scope of the activity and the structure of the document.
- Section 2 lists reference documents (including web addresses) and acronyms that are relevant to this activity.
- Section 3 provides an overview of the Aim and Specific Requirements to be addressed by the project.
- Section 4 defines the detail requirements to be addressed classified by project themes.
- Section 5 contained the requirements compliance matrix
- Section 6 contains an appendix describing the data needed for the study.

2. Reference documents and Acronyms

2.1 Applicable Documents (AD)

Applicable documents that contain relevant information for the project are:

[SoW]	ESA (2014), Support to Science Element SMOS+STORM Evolution Statement of work, available from ESA-ESA-STSE-SMOS-STORM-Evolution-SoW-Iss-O-Rev-1
[Contract]	ESA contract for SMOS+STORM Evolution Ref: 4000105171/12/I-BG
[PM1-MOM]	Minutes of the PM1 meeting held on 8-9 Sep 2014, ref. SMOSpluSTORM_EVOLU_MoM_PM1_v1.1, Issue 1.0, dated 16 Sep 2014.
[Proposal] C	ontractor's Proposal (ref. SMOS+STORM_Evolution revision 1 dated 14 March 2014)

2.2 Reference Documents (RD)

Reference documents that contain relevant information for the project are:

[RD-1] ESA (2002), Mission Objectives and Scientific Requirements for the Soil Moisture and Ocean salinity Mission, Version-5, available from http://esamultimedia.esa.int/docs/SMOS MRD V5.pdf Ocean Surface Remote Sensing at High Winds with SMOS, Requirement Baseline [RD-2] document, SMOS+STORM Feasibility project, 2013, available from ESA. Ocean Surface Remote Sensing at High Winds with SMOS, Product Validation Report [RD-3] document, SMOS+STORM Feasibility project, 2013, available from ESA. Ocean Surface Remote Sensing at High Winds with SMOS, Summary Roadmap, [RD-4] SMOS+STORM project, 2013, available from ESA. [RD-5] Reul, N., J. Tenerelli, B. Chapron, D. Vandemark, Y. Quilfen, and Y. Kerr (2012), SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes, J. Geophys. Res., 117, C02006, doi:10.1029/2011JC007474. [RD-6] Reul N. and B. Chapron (2001), SMOS - Salinity Data processing Study Improvements in Emissivity Models (WP 1100 Report), ESA contract N_15165/01/NL/SF Yueh S.H., S.J. Dinardo, A.G. Fore and F.K. Li, 2010, Passive and Active L-band [RD-7] Microwave Observations and Modeling of Ocean Surface Winds, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 8, pp. 3087-3100. [RD-8] Powell, M. D., S. H. Houston, L. R. Amat, and N Morisseau-Leroy, 1998, The HRD 1122 real-time hurricane wind analysis system. J. Wind Engineer.andIndust. Aerodyn. 77-78, 53-1123 64. [RD-9] Reul, N., and B. Chapron, 2003, A model of sea-foam thickness distribution for passive microwave remote sensing applications, J. Geophys. Res., 108(C10), 3321, doi:10.1029/2003JC001887. [RD-10] SMOS L2 OS Algorithm Theoretical Baseline Document, ARGANS tech doc, SO-TN-ARG-GS-0007, 25 January 2013 (available at http://www.argans.co.uk/smos/docs/deliverables/delivered/ATBD/) [RD-11] SMOS L2 OS OTTs for DPGS, ARGANS tech doc, SO-RP-ARG-GS-0070, 2012 (available at http://www.argans.co.uk/smos/docs/reports/) E. Anterrieu, P. Waldteufel, and A. Lannes, Apodization functions for 2-d hexagonally [RD-12] sampled synthetic aperture imaging radiometers, IEEE Trans. Geosci. and Remote Sens., vol. 40, no. 3, pp. 2531-2541, Dec. 2002. Grodsky, S. A., N. Reul, G. Lagerloef, G. Reverdin, J. A. Carton, B. Chapron, Y. Quilfen, [RD-13] V. N. Kudryavtsev, and H.-Y. Kao (2012), Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations, Geophys. Res. Lett., 39, doi:10.1029/2012GL053335 [RD-14] ESA 2010: Monthly RFI monitoring report http://nwmstest.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/smos Lagerloef, G., R. Colomb, D. Le Vine, F. Wentz, S. Yueh, C. Ruf, J. Lilly, J. Gunn, Y. [RD-15] Chao, A. Decharon, G. Feldman, and C. Swift (20080, The Aquarius/SAC-D mission, Oceanography, vol. 21, no. 1, pp. 68-81. [RD-16] AnguelovaM. D. and F. Webster(2006), Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps, J. Geophys. Res., vol. 111, Co3017.

- [RD-17] Levizzani, V., (2008), Precipitation Measurements from Space, 3rd European Conference on Antennas and Propagation, 2006. *EuCAP 2006*, 10.1109/EUCAP.2006.4584829, 1-5.
- [RD-18] Hwang, P. A., D. M. Burrage, D. W. Wang, and J. C. Wesson (2011), An Advanced Roughness Spectrum for Computing Microwave L-Band Emissivity in Sea Surface Salinity Retrieval, *IEEE Geoscience and Remote Sensing Letters*, 8, 547.
- [RD-19] Font, J., A. Camps, A. Borges, M. Martin-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, and S. Meckelenburg (2010), SMOS: The challenging sea surface salinity measurement from space, *Proc. IEEE*, vol. 98, no. 5,49–665.
- [RD-20] Donlon, C. J., P. J. Minnett, C. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward, and J. Murray (2002), Towards improved validation of satellite sea surface skin temperature measurements for climate research, J. Climate, 15, 353-369.
- [RD-21] Ho, D. T., C. J. Zappa, W. R. McGillis, L. F. Bliven, B. Ward, J. W. H. Dacey, P. Schlosser, and M. B. Hendricks, (2004), Influence of rain on air-sea gas exchange: Lessons from a model ocean. J. Geophys. Res., 109, Co8S18, doi:10.1029/2003JC001806.
- [RD-22] Paulson, C. A., and G. S. E. Lagerloef, (1993), Fresh surface lenses caused by heavy rain over the western pacific warm pool during TOGA COARE, in EOS Trans. AGU 74.
- [RD-23] Wijesekera, H. W., C. A. Paulson, and A. Huyer, (1999), The Effect of Rainfall on the Surface Layer during a Westerly Wind Burst in the Western Equatorial Pacific, *J. Phys. Oceanog.*, 29, 612-
- [RD-24] Zine, S., J. Boutin, J. Font, N. Reul, P. Waldteufel, C. Gabarró, J. Tenerelli, F. Petitcolin, J. L. Vergely, M. Talone, and S. Delwart, (2008), Overview of the SMOS sea surface salinity prototype processor, *IEEE T. Geosci. Remote*, vol. 46, pp. 621-645.
- [RD-25] Swift, C. T. and R. E. McIntosh, (1983), Considerations for microwave remote sensing of ocean surface salinity,*IEEE T. Geosci. Remote*, vol. 21, pp. 480-491.
- [RD-26] Yueh, S. H., R. West, W. J. Wilson, F. K. Li, E. G. Njoku, and Y. Rahmat-Samii, (2001), Error sources and feasibility for microwave remote sensing of ocean surface salinity, *IEEE T. Geosci. Remote*, vol. 39, pp. 1049-1060
- [RD-27] Brainerd, K. E., and M. C. Gregg, 1997, Turbulence and stratification on the TropicalOcean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment microstructure pilotcruise, *J. Geophys. Res.*, 102, 10,437 - 10,456.
- [RD-28] Araujo, M., C. Limongi, J. Servain, M. Silva, F. S. Leite, D. Veleda, and C. A. D. Lentini, (2011), Salinity-induced mixed and barrier layers in the southwestern tropical Atlantic Ocean off the northeast of Brazil, *Ocean Sci.*, 7, 63–73, 2011, <u>www.ocean-sci.net/7/63/2011/</u>, doi:10.5194/os-7-63-2011
- [RD-29] Terray, L., L. Corre, S. Cravatte, T. Delcroix, G. Reverdin, A. Ribes, (2012), Near-Surface Salinity as Nature's Rain Gauge to Detect Human Influence on the Tropical Water Cycle. J. Climate, 25, 958–977, doi: <u>http://dx.doi.org/10.1175/JCLI-D-10-05025</u>
- [RD-30] Saunders, P. M. 1967, The temperature at the ocean-air interface, *J. Atmos. Sci.*, 24, 269-273.
- [RD-31] Anthes, R. A., R. W. Corell, G. Holland, J. W Hurrell, M. C MacCracken and K. E Trenberth, 2006, Hurricanes and Global Warming—Potential Linkages and Consequences, BAMS, May, 2006, DOI:10.1175/BAMS-87-5-617
- [RD-32] Trenberth, K. E and D. J. Shea, 2006, Atlantic hurricanes and natural variability in 2005, GRL, doi:10.1029/2006GL026894
- [RD-33] Trenberth, K. E and J. Fasullo, 2007, Water and energy budgets of hurricanes and implications for climate change, J. Geophys. Res., 112, doi:10.1029/2006JD008304

[RD-34] Trenberth, K. E, 2005, Uncertainty in Hurricanes and Global Warming, Science 308, 1753, DOI: 10.1126/science.1112551

2.3 Acronyms and abbreviations

Actions Data Base
Advanced Dvorak Technique
Advanced Microwave Scanning Radiometer – E (of EoS Aqua)
Advanced Microwave Scanning Radiometer 2
Advanced microwave sounding unit Radiometer onboard NOAA
meteorological sat
Atlantic Oceanographic and Meteorological Laboratory
Salinity mission (of NASA/CONAE)
Advanced Synthetic Aperture Radar (of ENVISAT)
Advanced SCATterometer (of MetOp)
Algorithm Theoretical Basis Document
NOAA Automated Tropical Cyclone Forecast system
Advanced Very High Resolution Radiometer
Blended multi-mission oceanic wind speed products
Centre d'Archivage et de Traitement des Données SMOS
Coupled Boundary Layer Air-Sea Transfer
Critical Design Review
Cooperative Institute for Meteorological Satellite Studies
Conical Microwave Imager/Sounder
COmision NAcional de Actividades Espaciales
Directory (of the SMOS+ STORM Evolution project)
Defense Meteorological Satellite Program (of the USA)
DetailedProcessing Model
European Centre for Medium-Range Weather Forecast
Environnent Satellite (http://envisat.esa.int)
European Space Agency
Expert Support Laboratory
Earth Observation
European Union
Extra-Tropical Cyclone
Final Report
Foam, Rain, Oil and GPS-reflectometry
Geophysical Fluid Dynamic Laboratory
Global Forecast System
GODAE High Resolution SST
Geophysical Model Function
Goddard Space Flight Center
Significant Wave Height (also SWH)
Hurricane Research Division (of AOML)
NOAA National Hurricane Center Hurricane Wind Analysis products
Input/Output Data Definition
Invitation To Tender

IR	Infra Red
JMR	Jason Microwave Radiometer
JPL	Jet Propulsion Laboratory
JRA-25	Japanese 25-Year Reanalysis Project
ITWC	Joint Typhoon Warning Center
КО	Kick-Off
L1	Level-1
L2	Level-2
L3	Level-3
MIRAS	Microwave Imaging Radiometer by Aperture Synthesis
MR	Monthly Report
MTR	Mid-Term Review
NAH	NOAA/NWS/NCEP North Atlantic Hurricane Wind Wave forecasting system
NASA	National Aeronautics and Space Administration
NCEP	National Centers for Environmental Prediction
NDBC	National Data Buov Center
NHC	NOAA National Hurricane Center
NOAA	National Oceanic and Atmospheric Administration
NOGAPS	U. S. Navy's Operational Global Atmospheric Prediction System
NOP	Numerical Ocean Prediction
NRCS	Normalized Radar Cross-Section
NWP	Numerical Weather Prediction
NWS	National Weather Service
OSCAT	Oceansat-2 Scatterometer
OPS	Observation Processing System (of Met Office)
OS	Ocean Salinity
PALS	Passive/Active L-band Sensor
PM	Progress meeting
PMP	Project Management Plan
PMR	Passive Microwave Radiometry
PMSL	Pressure at Mean Sea Level
PSS	Practical Salinity Scale
OC	Ouality Control
RA-2	Radar Altimeter 2 (of ENVISAT)
RD	Reference Document
SAR	Synthetic Aperture RADAR
SAR	Scientific Assessment Report (of <i>SOS</i>)
SAP	Scientific Analysis Plan
SatCon	CIMSS Satellite Consensus (SatCon) product
SFMR	Step Frequency Microwave Radiometer
SIAR	Scientific and Impact Assessment Report
SLA	Sea Level Anomaly
SMOS	Soil Moisture and Ocean Salinity (mission)
SMOS-HWS	SMOS High Wind Speed products (surface wind speed and foam-related
	properties)
SoW	Statement of Work
SSM/I	Special Sensor Microwave Imager (of DMSP)
SSMIS	Special Sensor Microwave Imager Sounder
SST	Sea Surface Temperature

SSS	Sea Surface Salinity
STSE	Support to Science Element
TBC	To Be Confirmed
TC	Tropical Cyclone
TBD	To Be Determined
TDP	Technical Data Package
TDS	Test Data Set
TMI	TRMM Microwave Imager
TN	Technical Note (short report 10-50 pages)
TR	Technical Report (long report > 50 pages)
TRMM	Tropical Rainfall Measuring Mission
UM	User Manual
URL	Universal Resource Locator
WP	Work Package

2.4 Universal Resource Locators (URL) The following URL links contain relevant information that will be referred to in the d

locument:			
[URL-1]	ESA web site	http://www.esa.int/	
[URL-2]	STSE SMOS+ STORM Project	http://smosstorm.org/	
[URL-3]	STSE web site	http://www.esa.int/stse/	
[URL-4]	ESA Category1	http://eopi.esa.int/	
[URL-5]	ESA LPP SMOS webpage	http://www.esa.int/esaLP/LPsmos.html	
[URL-6]	Aquarius webpage	http://aquarius.nasa.gov/	
[URL-7]	SMOS Barcelona Expert Centre	http://www.smos-bec.icm.csic.es/	
[URL-8]	CATDS Expertise Center - Ocean	Salinity (CEC-OS)	
	http://www.salinityremotesens	<u>ing.ifremer.fr</u>	
[URL-9]	LOCEAN SMOS	http://www.locean-ipsl.upmc.fr/smos/	
[URL-10]	ARGANS SMOS L2 Processor	http://www.argans.co.uk/projects.html	
[URL-11]	SMOS Ice Project	https://wiki.zmaw.de/ifm/SMOSIce	
[URL-12]]SPURS experiment		
http://ourocean.jpl.nasa.gov/SPURS/tindex.jsp			
[URL-13] SMOS at ECMWF			
http://www.ecmwf.int/research/ESA projects/SMOS/			
[URL-14]SMOS L3 and L4 products <u>http://www.cp34-</u>			
	smos.icm.csic.es/smos_mission/	<u>/smos_mission.htm</u>	
[URL-15]]ESA EarthnetSMOS	https://earth.esa.int/web/guest/missions/esa-	
	operational-eo-missions/smos		
[URL-16]	SMOS Mode (EU COST action)	http://www.smos-mode.eu/action.html	
[URL-17] AOML/NOAA/HRD H*Wind Project			
<u>nttp://www.aoml.noaa.gov/hrd/data_sub/wind.html</u>			

3. Summary of SMOS+STORM Requirements

3.1 Overview

The requirements presented in this document have been driven from three main sources:

1. The original Statement of Work from ESA [SoW].

- 2. Our technical proposal [Proposal] and Project Management Plan [PMP].
- 3. Internal discussion within the SMOS+STORM project team & ESA (PM1-MoM).

4. User Requirements found in the scientific literature and Tropical & Extra-Tropical storm community forum

In general, the multiple sources driving the requirements all lead to a consistent Requirements Baseline.

3.2 Key Requirements and Objectives

The present project has one overall aim which is to **Demonstrate the performance, utility** and impact of SMOS L-band measurements at high wind speeds over the ocean during Tropical and Extra-Tropical storm conditions.

The specific **requirements** of the SMOS+ STORM Evolution project (referred to as SREQ-# in that document) that will be addressed in that study by the IFREMER-ODL-METoffice-Solab consortium contracted by ESA are:

STORM-RB-SREQ-01: L-band signal response of the ocean in storms		
The team will improve and consolidate our theoretical understanding of the		
L-band signal response and physical properties that can be inferred over the		
ocean during the passage of Tropical Cyclone (TC) and Extra-Tropical		
Cyclone (ETC) systems.		
Verification Method	Inspection	

Ver meation Methou	Inspection
Reference in SoW	Section 4.1 [REQ-1.]

STORM-RB-SREQ-02: Evolution of GMF & Retrieval Algorithm			
The team will evolve, implement a	nd validate the STSE SMOS+STORM		
feasibility project Geophysical Model Function (GMF) and retrieval algorithm			
for high wind speed conditions.			
Verification Method	Inspection		
Reference in SoW	Section 4.1 [REO-2.]		

STORM-RB-SREQ-03: Generation of HWS products & validation

The project members will systematically produce and validate L-band SMOS				
rtainty estimates for ETC and TC				
conditions over the entire SMOS Mission archive.				
Verification Method Inspection				
Section 4.1 [REQ-3.]				

STORM-RB-SREQ-04: Generation of blended HWS products & validation The consortium will develop, implement and validate new blended multimission oceanic wind speed products with uncertainty estimates incorporating SMOS+ STORM Evolution L-Band measurements at high-wind speeds for TC and ETC events.

Verification Method	Inspection
Reference in SoW	Section 4.1 [REQ-4.]

STORM-RB-SREQ-05: Generation of a Global TC & ETC database

The project team members will generate a global database of TC and ETC events over the ocean surface with SMOS data and characterize each event using diverse Earth Observation and other observations in synergy.

Verification Method	Inspection	
Reference in SoW	Section 4.1 [REQ-5.]	

STORM-RB-SREQ-06: OA coupling and MLD for ETC & TC

The research conducted by the project team will improve our understanding and parameterization of ocean-atmosphere coupling and mixed-layer dynamics for ETC and TC cases.

Verification Method	Inspection
Reference in SoW	Section 4.1 [REQ-6.]

STORM-RB-SREQ-07: Impact for maritime applications

The analyses conducted in the frame of the project will demonstrate the utility, performance and impact of SMOS+ STORM Evolution products on TC and ETC prediction systems in the context of maritime applications.

Verification Method	Inspection
Reference in SoW	Section 4.1 [REQ-7.]

STORM-RB-SREQ-08: SMOS STORM Promotion

The consortium will promote the SMOS mission and related products through the SMOS+ STORM Evolution project.

Verification Method	Inspection
Reference in SoW	Section 4.1 [REQ-8.]

STORM-RB-SREQ-09: Scientific publications				
The team will submit scientific peer-reviewed journal article(s) documenting				
the results of the SMOS+ STORM Evolution project.				
Verification Method Inspection				
Reference in SoW Section 4.1 [REQ-9.]				

4. Detailed Requirements

The detailed requirements are referred to as STORM-RB-DREQ-# in the rest of the document. For each identified theme in our proposal, we describe here below the details requirements.

4.1 Improve physical understanding, retrieval algorithms and product quality for SMOS High Wind Speed products

4.1.1 L-band signal response over the ocean in very high wind speed conditions.

The objectives are:

- *conduct fundamental research and development* to further our knowledge of SMOS L-band signal response at high very wind speeds associated with TC and ETC events.
- Improve the extraction of L-band emissivity properties at high winds
- *Analyse the impacts* of rain, sea state, SSS and SST on the observed emissivity changes
- *Analyze and define which* physical properties (e.g., foam formation properties, breaking wave statistics) best characterize the sea surface state at very high wind speeds. Determine how these properties can be inferred from SMOS measurements in very high wind speed conditions.

The detailed requirements to reach these objectives are:

STO)RM-	RB-DR	EQ-01	l: Re	viev	w foam	emissivity	y modelin	g in Microwave
ban	ıds								
		C	1		1.	C · 1	1 1 .	1 .	

A review of our understanding of the underlying physics responsible for the observed microwave radio-brightness contrasts at High winds and the peculiarities of L-band with respect higher frequencies will be performed It will include a review and analysis of :

-foam emissivity models.

-current knowledge on foam and streaks coverage & thickness,

- Foam property retrievals methods from radiometer data

Verification Method	Inspection
Reference in SoW	Section 5.1.2

STORM-RB-DREQ-02: Improved Exploitation of SMOS observations capabilities

Fundamental research and development shall be conducted to Improve the extraction of L-band emissivity properties at high winds exploiting:

- multi-angular (incidence, azimuth),

-multi-spatial resolution

-polarization properties

-recently improved level 1 characteristics (RFI filtering, stability, solar and galactic aspects etc) of SMOS data.

Verification Method	Inspection
Reference in SoW	Section 5.1.2

STORM-RB-DREQ-03: Modeled Geophysical Contributions to SMOS signal in high winds

A review on the expected impacts of

- ✓ rain,
- ✓ sea state,
- ✓ SSS and SST

on the observed emissivity changes at L-band in high winds shall be provided from a sensitivity analysis of well established forward emissivity models.

In particular, the project shall consider to provide answers to the following questions:

• Is the increase in the Tb sensitivity to wind speed at hurricane force (>64 knots) purely driven by surface processes or affected by intense rain events?

 \circ \quad Do wave parameters need to be accounted for in the wind speed retrieval?

Verification Method	Inspection
Reference in SoW	Section 5.1.2

STORM-RB-DREQ-04: Theoretical expressions of the expected dependencies of the L-band radio-brightness contrast

Based on the review, the project will revisit the theoretical (dimensional) expressions of the expected dependencies between L-band radio-brightness contrast, surface wind speed, foam properties (coverage & thickness), rain rate, SSS and SST

Verification Method	Inspection
Reference in SoW	Section 5.1.2

4.1.2 GMF development & surface wind speed retrieval algorithm

Objectives:

From the results of the review and the analysis of the first version of the SMOS-HWS database, a detailed new "surface wind speed" SMOS-HWS algorithm will be defined in the form of ATBD/IODD and DPM for L-band satellite High wind speed product.

The detailed requirements to reach these objectives are:

STORM-RB-DREQ-05: Definition of the Physical Properties contributing to SMOS signal in high winds

The physical properties (e.g., foam formation properties, breaking wave statistics) that dominate the observed SMOS signal changes in high winds shall be analyzed and defined.

Verification Method	Inspection
Reference in SoW	Section 5.1.2

STORM-RB-DREQ-06: Retrieval Methods for the Physical Properties		
Methods to infer physical properties of the sea surface (foam formations		
properties, breaking wave statitistics, wind parameters) from SMOS		
measurements in very high wind speed conditions shall be determined.		
Verification Method	Inspection	
Reference in SoW	Section 5.1.2	

STORM-RB-DREQ-07: Statistical dependencies of SMOS Tb

Reliable statistical dependencies of SMOS Tb as function of incidence angle, polarisation, rain rate, wave parameters and surface wind and any other parameter of relevance shall be established from the first version of the SMOS-DB

Verification Method	Inspection
Reference in SoW	Section 5.1.2

STORM-RB-DREQ-08: Radio Frequency Interference mitigation	
Approaches to mitigate Radio Frequency Interference (RFI) impacts shall be	
considered in order to be used in the SMOS+ STORM evolution project.	
Inspection	
Section 5.1.2	

STORM-RB-DREQ-09: SMOS surface wind speed retrieval algorithm GMF

The SMOS surface wind speed retrieval algorithm GMF (e.g. multiple geophysical variable retrieval algorithm (SMOS High Wind Speed, SHWS) including SST, SSS, wind speed, waves, whitecap distribution...) shall be refined and improved.

Verification Method	Inspection
Reference in SoW	Section 5.1.2

STORM-RB-DREQ-10: SMOS High Wind Speed (SHWS)-ATBD	
Algorithm Theoretical Basis Description (ATBD) document shall be written	
for the SHWS	
Verification Method	Inspection

vernication method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-11: SHWS-ATBD overview description

The SHWS ATBD shall include an overview description of the background to the algorithm

Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-12: SHWS-ATBD Mathematical description	
The SHWS ATBD shall include a Mathematical description of the algorithm	
Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-13: SHWS-ATBD IODD

The SHWS ATBD shall Describe all related data sources in an Input/Output Data Description (IODD) Chapter, following the template provided in Appendix-1 of the Sow. Any restrictions in the use of any type of data sets (e.g., proprietary campaign data) shall be communicated to the Agency immediately

Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-14: SHWS-ATBD DPM	
The SHWS ATBD shall include a Detailed Processing Model (DPM) Chapter	
that can be used to implement the Algorithm	
Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-15: SHWS-ATBD justifications

The SHWS ATBD shall document in a separate chapter the scientific justification for specific development choices and trade-offs (including technical considerations justifying the selected methodologies and approach)

Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-16: SHWS-ATBD Output product contents and format	
The team will use netcdf and specify in the SHWS ATBD the output product	
contents and format.	
Verification Method	Inspection

vermication methou	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-17: HSWS-ATBD Metadata		
The team will design and specify product metadata (based on existing		
standards) necessary to discover and manipulate data products,		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-18: SHWS-ATBD Risk & Solutions	
The SHWS ATBD shall include chapter documenting the identified risks and	
in which solutions are proposed.	
Verification Method	Inspection
Reference in SoW	Section 5.1.3

4.1.3 Foam property retrieval capability from SMOS data

Objectives:

- Based on the output of previous tasks an algorithm will be proposed here to retrieve directly foam formation properties : whitecap coverage and/or foam-layer thickness as a geophysical product instead of wind speed at the surface of TC and ETC from SMOS radio-brightness contrasts in storms. We anticipate the potential retrieval of both whitecap & streak coverage but also of foam-formation layer thicknesses.
- Write an ATBD for these products

The detailed requirements associated with that task are:

STORM-RB-DREQ-19: semi-empirical parametrization of L-band foam-		
induced emissivity		
A reanalysis of the semi-empirical parametrization of L-band foam-induced		
emissivity shall be conducted to provide a physical basis for foam and		
breaking wave properties (coverage, thickness) retrieval from SMOS data.		
Verification Method	Inspection	

Reference in SoW

Section 5.1.2

STORM-RB-DREQ-20: Foam properties retrieval algorithm

An algorithm to retrieve oceanic surface properties (foam, breaking wave properties) from L-band data in high winds shall be developed to serve as a basis for a systematic production.

Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-21: SMOS Whitecap & Foam (WF)-ATBD		
Algorithm Theoretical Basis Description (ATBD) document shall be written		
for the Whitecap and Foam properties retrieval		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-22: WF-ATBD overview description		
The WF ATBD shall include an overview description of the background to the		
algorithm		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-23: WF-ATBD Mathematical description		
The WF ATBD shall include a Mathematical description of the algorithm		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-24: WF-ATBD IODD

The WF ATBD shall Describe all related data sources in an Input/Output Data Description (IODD) Chapter, following the template provided in Appendix-1 of the Sow. Any restrictions in the use of any type of data sets (e.g., proprietary campaign data) shall be communicated to the Agency immediately

Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-25: WF-ATBD DPM	
The WF ATBD shall include a Detailed Processing Model (DPM) Chapter that	
can be used to implement the Algorithm	
Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-26: WF-ATBD justifications		
The WF ATBD shall document in a separate chapter the scientific		
justification for specific development choices and trade-offs (including		
technical considerations justifying	the selected methodologies and	
approach)		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	
STORM-RB-DREQ-27: WF-ATBD Output product contents and format		
The team will use netcdf and specify in the WF ATBD the output product		
contents and format.		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	
STORM-RB-DREQ-28: WF-ATBD Metadata		
The team will design and specify product metadata (based on existing		

standards) necessary to discover and manipulate data products,	
Verification Method	Inspection
Reference in SoWSection 5.1.3	

STORM-RB-DREQ-29: WF-ATBD Risk & Solutions		
The WF ATBD shall include chapter documenting the identified risks and in		
which solutions are proposed.		
Verification Method Inspection		
Reference in SoW	Section 5.1.3	

4.1.4 Merged Multi-mission wind speed product Algorithm

Objectives

- The complementarity of SMOS-HWS products and added-value with radiometer data (WindSat, AMSR-2, SMAP), scatterometer ones (ASCAT & Oscat) and NWP products (ECMWF & NCEP) will be studied with the aim to produce new blended surface wind speed products including the SMOS high wind speed data. Such capability will be analyzed in detail in this task, blending methodology will be studied with the aim of defining an algorithm to generate such blended wind products.
- As a first objective we plan to merge SMOS data and AMSR2 wind speed retrievals and probably further add the WindSat data and the future SMAP sensor ones. For AMSR2 high wind speed retrieval under rain, we will rely on a new methodology currently being developed by *Zabolotskikh et al.*, 2013

Detailed requirements are:

STORM-RB-DREQ-30: Synergy algorithm		
An algorithm to maximise the synergy between complementary satellite:		
including SMOS, AMSR-2, WindSat and SMAP and other data (e.g. in situ,		
weather forecast models, drop-sonde, multi-frequency aircraft radiometers)		
of high winds shall be developed to serve as a basis for a systematic		
production of a blended high wind speed product (Blended High Wind		
Speed, BHWS)		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-31:	Blended High Wind S	peed uncertainty
-------------------	----------------------------	------------------

A method to provide an estimate of uncertainty for multi-sensor blended wind speed retrievals shall be developed, implemented and validated

	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-32: Blended High Wind Speed (BHWS)-ATBD		
Algorithm Theoretical Basis Description (ATBD) document shall be written		
for the BHWS		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-33: BHWS-ATBD overview description		
The BHWS ATBD shall include an overview description of the background to		
the algorithm		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-34: BHWS-ATBD Mathematical description		
The BHWS ATBD shall include a Mathematical description of the algorithm		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-35: BHWS-ATBD IODD

The BHWS ATBD shall Describe all related data sources in an Input/Output Data Description (IODD) Chapter, following the template provided in Appendix-1 of the Sow. Any restrictions in the use of any type of data sets (e.g., proprietary campaign data) shall be communicated to the Agency immediately

Verification Method

Reference in SoW	Section 5.1.3

STORM-RB-DREQ-36: BHWS-ATBD DPM		
The BHWS ATBD shall include a Detailed Processing Model (DPM) Chapter		
that can be used to implement the Algorithm		
Verification Method Inspection		
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-37: BHWS-ATBD justifications		
The BHWS ATBD shall document in a separate chapter the scientific		
justification for specific development choices and trade-offs (including		
technical considerations justifying the selected methodologies and		
approach)		
Verification Method	Inspection	
Reference in SoW Section 5.1.3		
Reference in Sow	Section 5.1.3	

STORM-RB-DREQ-38: BHWS-ATBD Output product contents and format		
The team will use netcdf and specify in the BHWS ATBD the output product		
contents and format.		
Verification Method Inspection		
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-39: BHWS-ATBD Metadata	
The team will design and specify product metadata (based on existing	
standards) necessary to discover and manipulate data products,	
Verification Method Inspection	
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-40: BHWS-ATBD Risk & Solutions

The BHWS ATBD shall include chapter documenting the identified risks and in which solutions are proposed.

Verification Method	Inspection
Reference in SoW	Section 5.1.3

21

4.2 Generate & Validate SMOS High Wind Speed Product Databases

4.2.1 Data Set collection and Preprocessing

Objectives:

- to generate first database version to be used internally for algorithm development & GMF improvements
- to collect & process the auxilliary datasets for validation
- to define product Quality indicators

The associated details requirements are as follows:

STORM-RB-DREQ-41: Processing of SMOS archive with the first version of the HWS algorithm

The SMOS entire archive for years 2012 and 2013 will be processed with the first version of the HWS algorithm in order to prepare a preliminary datasets (SMOS-DB1) usefull for GMF improvments. These datasets will include: -Multi-angular SMOS TB data

-SMOS sensor observations parameters (polarisation, RFi flags, incidence & azimuth..)

-Retrieved winds from the first version of the HWS algorithm

Verification Method	Inspection
Reference in SoW	Section 5.1.3

TC and ETC storm track will be collected from IBtrack database (TC) and from the ERA interim re-analysis of ETC tracks provided by University of Reading (<u>http://www.met.reading.ac.uk/~dispersion/track/docs.html</u>):

Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-43: Method to determine SMOS intercepts with Storm Track data

A method will be developed to detect the useful TC & ETC events in SMOS data based on the Storm track datasets

Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-44: Auxiliary datasets collection The necessary auxiliary datasets to be used for products developments and validation shall be collected and will populated SMOS-DB1 including: -ECMWF & NCEP atmospheric and surface parameters -WOA SSS & CATDS Level 3 SSS -OSTIA SST -Storm Track parameters (track, Max Wind Speed-Wind Radii,.)

And when available

- co-localized NDBC buoys surface wind
- co-localized SFMR flight transect & surface winds, Rain rate and Tb data
- co-localized Altimeter winds
- co-localized TRMM, WindSat and SSM/I rain rates (may potentially include GPM sensor data if available)

Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-45: Preprocessing of Auxiliary datasets

Some necessary auxiliary datasets to be used for products developments and validation shall be pre-processed (co-localization, spatial & temporal averaging, altitude corrections, ...) to be compared to SMOS observations. These include:

- co-localized NDBC buoys surface wind
- co-localized SFMR flight transect & data
- co-localized Altimeter winds
- co-localized TRMM, WindSat and SSM/I rain rates (may potentially include GPM sensor data if available)

Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-46: SHWS products Quality Indicator

Suitable Quality Indicator (QI) flags associated with potential errors and a filtering algorithm to communicate to users the quality of data will be defined for the SHWS products

Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-47: BHWS products Quality Indicator	
Suitable Quality Indicator (QI) flags associated with potential errors and a	
filtering algorithm to communicate to users the quality of data will be	
defined for the BHWS products	
Verification Method Inspection	
Reference in SoW	Section 5.1.3

4.2.2 Building and publishing of a SMOS HWS/BLEND HWS Storm catalog

Objectives

Once the usefull SMOS HWS, SMOS-WF and BLEND-HWS detected events will have been classified and once the available auxilliary data will have been collected and pre-processed for these cases, once the GMF and product retrieval algorithms will have been properly tuned, we plan to build-up a dedicated SMOS-Storm catalog (STORM-DB) with a storm user interface provided with the dataset publication on a dedicated web site.

The detailed requirements associated with these objectives are:

STORM-RB-DREQ-48: SHWS ATBD implementation	
The SHWS ATBD shall be implemented	
Verification Method	Inspection
Reference in SoW	Section 5.1.4

STORM-RB-DREQ-49: BHWS ATBD implementation	
The BHWS ATBD shall be implemented	
Verification Method	Inspection
Reference in SoW	Section 5.1.4

STORM-RB-DREQ-50: SHWS products production

SHWS data products (SHWS-DATA) shall be produced for the period 2010-2015. The production run shall consider a re-processing of all available SMOS data since the end of satellite commissioning and include the quasi-systematic production and distribution of products using recently acquired data.

Verification Method	Inspection
Reference in SoW	Section 5.1.4

STORM-RB-DREQ-51: BHWS products production

BHWS data products (BHWS-DATA) shall be produced for the period 2010-2015. The production run shall consider a re-processing of all available SMOS data since the end of satellite commissioning and include the quasi-systematic production and distribution of products using recently acquired data.

Verification Method	Inspection
Reference in SoW	Section 5.1.4

STORM-RB-DREQ-52: SHWS products UM		
The team shall write a User Manual (UM) for SHWS-DATA that provides a		
user-oriented manual. The UM shall report the results QC and verification		
analysis and all validation results		
Verification Method	Inspection	
Reference in SoW	Section 5.1.4	

STORM-RB-DREQ-53: BHWS products UM		
The team shall write a User Manual (UM) for the BHWS-DATA that provides		
a user-oriented manual. The UM	shall report the results QC and	
verificationanalysis and all validation results		
Verification Method	Inspection	
Reference in SoW	Section 5.1.4	

STORM-RB-DREQ-54: STORM-DB Implementation

A database (STORM-DB) of relevant data (e.g., SST, rain rates, optical imagery of cloud, SSS, OVW, NOP and NWP outputs) for Tropical Cyclone and Extra-Tropical Cyclone storms will be implemented to cover the period 2010-2015. Each storm shall be named according to the WMO TC naming protocol (http://www.wmo.int/pages/prog/www/tcp/Storm-naming.html) and STORM-DB shall allow users to consider each Storm as an "event case study" allowing synergy exploration of the relevant storm.

Verification Method	Inspection
Reference in SoW	Section 5.1.5

STORM-RB-DREQ-55: STORM-DB Web site & Visualisation tools	
On-line web access and visualisation tools for the STORM-DB shall be	
implemented.	
Verification Method	Inspection
Reference in SoW	Section 5.1.5

STORM-RB-DREQ-56: STORM-DB content	
The STORM-DB will be populated with relevant data required by Scientific	
Analysis activities	
Verification Method	Inspection
Reference in SoW	Section 5.1.5

STORM-RB-DREQ-57: STORM-DB UM	
A user manual (STORM-UM) shall be written for the STORM-DB system	
Verification Method	Inspection
Reference in SoW	Section 5.1.5

4.2.3 SMOS STORM Product validation

Objectives

- To perform validation of the SMOS High Wind products
- To inform the users of the data product quality

STORM-RB-DREQ-58: Validation Match-Up Database		
A validation Match-Up Database (VMDB) between SMOS-HWS, BLEND-HWS		
& WF products with in situ and satellite data (buoy, sfmr, scat,) will be		
generated		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-59: Quality Assesment Analyses		
Quality metrics will be developed and quality assessment analyses (co-		
localisation, statistics,etc.) will be performed based on the VMDB		
Verification Method	Inspection	
Reference in SoW	Section 5.1.3	

STORM-RB-DREQ-60: Products uncertainties	
The project shall develop, implement and validate a method to provide an systematic estimate of uncertainty for SMOS wind speed retrievals	
Verification Method	Inspection
Reference in SoW	Section 5.1.3

STORM-RB-DREQ-61: Products Quality Controls

A quality control and verification analysis of SHWS and BHWS products shall be performed and address verification issues such as format compliance, out of bounds values, flag effectiveness, bugs in the system, and any other aspect relevant to the verification of the data product production runs

Verification Method	Inspection
Reference in SoW	Section 5.1.4

STORM-RB-DREQ-62: Validate SHWS & BHWS products

The SHWS and BHWS products shall be validated through comparison with other independent data sets (e.g. ECMWF, NCEP, GFDL, ASCAT, OSCAT, buoys, SFMR) and any other aspect relevant to the validation of the data product

Verification Method	Inspection
Reference in SoW	Section 5.1.4

STORM-RB-DREQ-63: Quality assessment reports	
Quality assessment reports will be written to be included into User manuals	
Verification Method	Inspection
Reference in SoW	Section 5.1.4

4.3 Applications in the domain of Ocean-Atmosphere Interactions

4.3.1 Statistical Analysis:

Objectives:

Statistical Analysis of the SMOS-DB will be conducted and compared to other sources of marine surface wind data to emphasize the new scientific content of the products

The details requirements to reach these objectives are

STORM-RB-DREQ-64: Climatologies of SHWS & BHWS products		
Statistical Analysis of the SMOS-DB (SMOS-HWS, BLEND-HWS) will be		
conducted to generate climatologies of global ocean area with wind speed in		
excess of 34, 50 and 64 knots. They will be compared to other sources of		
marine surface wind data such as ASCAT and OSCAT equivalent analyses.		
Verification Method	Inspection	
Reference in SoW	Section 5.1.6	
Reference in SoW	Section 5.1.6	

STORM-RB-DREQ-65: Variability of Extreme Event distributions

The geographical (per nominal storm basins), seasonal and interannual variability of the extreme event distributions will be provided from a Statistical Analysis of the SMOS-DB and compared to other sources of marine surface wind data

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-66: Correlations with extreme wave and surface heat content

Statistical Analysis of the SMOS-DB extreme events will be conducted to estimate potential correlations with extreme wave event statistics and seasonal surface cooling.

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-67: Reporting the Statistical analysis results		
The results of the Statistical analysis of the high wind ocean features		
detected in SMOS-DB will be reported in a comprehensive Scientific and		
Impact Assessment Report (SIAR) and in peer reviewed journal paper(s) that		
present all scientific findings and impact assessment results of the project.		
Verification Method	Inspection	
Reference in SoW	Section 5.1.6	

STORM-RB-DREQ-68: Statistical analysis results on Project Web page	
The results of the Statistical analysis of the high wind ocean features will be	
prublished on the project web page	
Verification Method	Inspection
Reference in SoW	Section 5.1.6

4.3.2 Impact on Drag Parameterization

Objectives

✓ To derive new global climatological maps of surface wind stresses (modulus, divergence and curl) using authoritative studies parametrization of the drag coefficient as function of wind speeds

- ✓ To gain insight into the parametrization of the drag coefficient and its azimuthal variability within storm sectors
- ✓ To demonstrate the added-value/complementarities of SMOS-HWS and Blend-HWS in terms of coverage and wind stress range capability sampling compared to more traditional scatterometer based observations
- ✓ To propose new parameterisation of wind Drag at high wind

The detail requirements to reach these objectives are listed herebelow:

STORM-RB-DREQ-69: Database of wind stress products (WS-DB)		
A database of surface wind stress products including modulus, divergence		
and curl (WS-DB) will be generated from SMOS-DB products using		
authoritative studies parametrization of the drag coefficient		
Verification Method	Inspection	
Reference in SoW	Section 5.1.6	

STORM-RB-DREQ-70: New global climatological maps of surface wind stresses

New global climatological maps of surface wind stresses will be derived from the WS-DB over the SMOS mission period.

Merineation Method Inspec	ction
Reference in SoW Sectio	n 5.1.6

STORM-RB-DREQ-71: Analysis of Wind Stress azimuthal variability in storms

A statistical analysis of the WS-DB per storm sector will be performed to gain insight into the parametrization of the drag coefficient and its azimuthal variability within storm sectors

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-72: Wind Stress comparison with other datasets

Systematic comparisons between SMOS-DB based Wind Stress products and more traditional scatterometer based observations will be conducted to demonstrate the added-value/complementarities of SMOS-HWS and Blend-HWS in terms of coverage and wind stress range capability sampling.

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-73: Reporting the Wind Stress analysis results		
The results of the production and analysis of new wind stress products		
derived from SMOS-DB will be reported in a comprehensive Scientific and		
Impact Assessment Report (SIAR) and in peer reviewed journal paper(s) that		
present all scientific findings and impact assessment results of the project.		
Verification Method	Inspection	
Reference in SoW	Section 5.1.6	

STORM-RB-DREQ-74: Wind Stress analysis results on Project Web page				
The results of the Wind Stress analysis will be published on the project web				
page				
Verification Method Inspection				
Reference in SoW	Section 5.1.6			

4.3.3 Impact on Ocean Responses to Storms

Objectives

- To improve statistical evaluation of the sea surface cooling amplitude ΔSST_{CW} in the wake of storms now based on the new SMOS wind speed products.
- To demonstrate the interest for TC but also analyse the ocean response to ETC

The detail requirements to reach these objectives are listed herebelow:

STORM-RB-DREQ-75: Sea surface cooling amplitude ΔSST_{CW} in the wake of storms			
Statistical evaluation of the sea surface cooling amplitude ΔSST_{CW} as function of wind speed in the wake of TC and ETC storms will be conducted per basin based on the new SMOS wind speed products.			
Verification Method	Inspection		
Reference in SoW	Section 5.1.6		

STORM-RB-DREQ-76: Reporting the Ocean thermal Response results				
The results of the Sea surface cooling amplitude Δ SST _{CW} statistical evaluation				
as function of SMOS-DB products and its interest for TC and ETC will be				
reported in a comprehensive Scientific and Impact Assessment Report				
(SIAR) and in peer reviewed journal paper(s) that present all scientific				
findings and impact assessment results of the project.				
Verification Method	Inspection			
Reference in SoW	Section 5.1.6			

STORM-RB-DREQ-77: Ocean thermal Response results on Project Web			
page			
The results of the Ocean thermal Response analysis will be published on the			
project web page			
Verification Method Inspection			
Reference in SoW	Section 5.1.6		

4.4 Applications in the domain of Numerical Weather Predictions

4.4.1 Statistical Analysis

Objectives

- To perform comparison of the SMOS wind speed data with short range forecasts of 10m winds from the Met Office global model background to generate observed minus background values (O-B).
- To refine a suitable quality control (QC) methodology using the supplied QC flags to screen for potentially contaminated observations. Some form of bias correction may also be required prior to use of the data and this will also need to be investigated

The detail requirements to meet these objectives are:

STORM-RB-DREQ-78: Generate observed -background values (O-B)				
SMOS wind speed data will be compared with short range forecasts of 10m				
winds from the Met Office global model background to generate observed				
minus background values (O-B).				
Verification Method	Inspection			
Reference in SoW	Section 5.1.6			

STORM-RB-DREQ-79: Comparison SHWS & (0-B) with other			
measurements			
The SMOS wind speeds and O-B values will also be compared with collocated scatterometer surface wind measurements from the ASCAT. OSCAT and			
WindSat instruments			
Verification Method	Inspection		
Reference in SoW	Section 5.1.6		

STORM-RB-DREQ-80: SMOS products Complentarity

Analyses will be conducted to examine how SMOS products complement existing scatterometer data and to gauge where the data might be useful to numerical weather prediction (NWP).

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-81: Global performance				
A statistical analysis will be conducted to assess the global performance of				
SMOS data across a range of meteorological conditions				
Verification Method	Inspection			
Reference in SoW	Section 5.1.6			

STORM-RB-DREQ-82: Quality control (QC) methodology

A suitable quality control (QC) methodology will be developed using the supplied QC flags and model-based derived metrics to screen for potentially contaminated observations and to develop forms of bias correction required prior to use of the data in Metoffice Model

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-83: Reporting on the Statistical Analysis

The results of SMOS-DB products statistical analysis will be provided in a comprehensive Scientific and Impact Assessment Report (SIAR) and in peer reviewed journal paper(s) that present all scientific findings and impact assessment results of the project.

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-84: Metoffice Statistical results on Project Web page				
The results of the MetOffice statistical analysis will be published on the				
project web page				
Verification Method Inspection				
Reference in SoW	Section 5.1.6			

4.4.2 Assimilation

Objectives

Assimilation experiments will be performed to demonstrate the impact of SMOS wind speed observations on Met Office forecasts and analyses

The detail requirements to meet these objectives are:

changes	to	the	mean	global	
The impact of assimilating SMOS wind speeds into the Metoffice model will be					
demonstrated by diagnosing changes to the mean global atmospheric analyses e.g.					
low-level wind field, pressure at mean sea level (PMSL), etc					
Inspection					
Section 5.	1.6				
	changes speeds into he mean glob a level (PMS Inspection Section 5.	changes to speeds into the l ne mean global at a level (PMSL), o Inspection Section 5.1.6	changes to the speeds into the Metoff he mean global atmosph a level (PMSL), etc Inspection Section 5.1.6	changes to the mean speeds into the Metoffice mode he mean global atmospheric anal a level (PMSL), etc Inspection Section 5.1.6	

STORM-RB-DREQ-90: Diagnosing Im	pact through global NWP index				
The impact of assimilating SMOS wind speeds into the Metoffice model will be					
demonstrated by showing the changes in global model forecasts analysing the					
changes in the so-called global NWP index					
Verification Method	Inspection				
Reference in SoW	Section 5.1.6				

STORM-RB-DREQ-91: Forecast variable Comparisons						
The impact of assimilating SMOS wind speeds into the Metoffice model will be						
analysed by comparing various forecast variables (e.g. wind, surface pressure,						
geopotential height) with quality-controlled observations valid at the same						
time/location and calculating the difference in root mean square (RMS) error						
between the trial and control values						
Verification Method Inspection						
Reference in SoW	Section 5.1.6					

STORM-RB-DREQ-92: Reporting on the Assimilation Results					
The results of SMOS-DB products assimilation in the Metoffice Model will be					
provided in a comprehensive Scientific and Impact Assessment Report					
(SIAR) and in peer reviewed journal paper(s) that present all scientific					
findings and impact assessment results of the project.					
Verification Method Inspection					
Reference in SoWSection 5.1.6					

STORM-RB-DREQ-93: Metoffice assimilation results on Project Web							
page							
The results of the MetOffice assimilation analysis will be published on the							
project web page							
Verification Method	Inspection						
Reference in SoW Section 5.1.6							

4.4.3 TC Verification

Objectives

The main objective will be to verify the mean impact of SMOS-products on tropical cyclone forecast skill across the whole season

The detail requirements to meet these objectives are:

STORM-RB-DREQ-94: Analysis of the	e Track forecast error
Storm track & intensification verification impact of assimilating SMOS products forecast error	ons will be performed to assess the through an analysis of the Track
Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-95: Track forecast skill against CLIPER

Storm track & intensification verifications will be performed to assess the impact of assimilating SMOS products through comparisons of the Track forecast skill against CLIPER (climatology & persistence)

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM	1-RB	-D	RE(<u>Į-9</u>	6:	ES	tin	iate Free	quer	icy of	i supe	erie	or p)er	rto	rma	ance	<u>,</u>
Storm t	rack	&	inte	ensi	ific	cat	ion	verificat	ions	will b	be per	foi	rme	ed 1	to a	asse	ess tl	ne
_	~			-	~		~ ~							~		_		

impact of assimilating SMOS products through an analysis of the Frequency of superior performance (for track) i.e. summing up the number of forecasts when the trial error was lower

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-97: Analysis of the Mean change in intensity

Storm track & intensification verifications will be performed to assess the impact of assimilating SMOS products including an analysis of the Mean change in intensity as measured by 850mb relative vorticity, 10m wind and central pressure.

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-98: Analysis of the Mean absolute Error

Storm track & intensification verifications will be performed to assess the impact of assimilating SMOS products. These verification shall include an analysis of the Mean absolute error of 10m wind and central pressure.

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-99: Impact on the Intensity tendency skill score

Storm track & intensification verifications will be performed to assess the impact of assimilating SMOS products. The Intensity tendency skill score will be evaluated (ability to correctly predict strengthening or weakening). Separate strengthening and weakening scores can also be calculated.

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-100: Analyses of Case studies of individual storms	
Case studies of individual storms will also be performed to compare wind	
speeds from SMOS, scatterometers and NWP forecasts	
Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-101: Reporting on the TC Verification Results	
The results of the TC verification results will be provided in a comprehensive	
Scientific and Impact Assessment Report (SIAR) and in peer reviewed	
journal paper(s) that present all scientific findings and impact assessment	
results of the project.	
Verification Method	Inspection
Reference in SoW	Section 5.1.6
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-102: TC verification results on Project Web page	
The results of the MetOffice TC verification analysis will be published on the	
project web page	
Verification Method	Inspection
Reference in SoW	Section 5.1.6

4.5 Near Real Time Requirements

Data and timeliness requirements required by the project for a NRT demonstration

STORM-RB-DREQ-103: Timeliness requirements required by t	he
project for a NRT demonstration	

SMOS retrieved Wind Speed module delivered @ least at 50 km spatial resolution within a maximum of 6 hours from acquisition shall be needed for an NRT demonstration

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-104: SMOS L1 Data requirements required by the project for a NRT demonstration

Following the current version of our algorithm, the SMOS data provision requirements for an NRT demonstration into the SMOS ground Segment include:

The SMOS L1B products

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-105: SMOS Earth CFI Data requirements required by the project for a NRT demonstration

Following the current version of our algorithm, the SMOS data provision requirements for an NRT demonstration into the SMOS ground Segment include:

SMOS data geometrical parameters obtained using Earth CFI software and including

- Latitude of the earth target: $lat(\xi, \eta, scene_i)$
- Longitude of the earth target: $lon(\xi, \eta, scene_i)$,
- Earth incidence angle at the target: $\theta(\xi, \eta, scene_i)$
- look direction azimut at the target $\varphi(\xi, \eta, scene_i)$,
- right ascension of the earth specularly reflected path in the B1950 sky coordinate system $ra(\xi, \eta, scene_i)$
- declination of the earth specularly reflected path in the B1950 sky coordinate system $dec(\xi, \eta, scene_i)$
- cosine director coordinate of the sun ξ_{sun} , $\eta_{sun}(scene_i)$ and aliases
- cosine director coordinate of the moon ξ_{moon} , $\eta_{moon}(scene_i)$
- cosine director coordinate of the earth specularly reflected path towards the sun $\xi^{spec}_{sun}, \eta^{spec}_{sun}(scene_i)$
- cosine director coordinate of the earth specularly reflected path towards the moon $\xi^{spec}_{moon}, \eta^{spec}_{moon}(scene_i)$

Verification Method	Inspection
Reference in SoW	Section 5.1.6

STORM-RB-DREQ-106: SMOS ECMWF Data requirements required by the project for a NRT demonstration	
Following the current version of our algorithm, the SMOS data provision requirements for an NRT demonstration into the SMOS ground Segment shall include auxilliary SMOS ECMWF geophysical parameters describing the atmosphere, spatio-temporally interpolated in the xi eta frame of the SMOS antenna instrument. They include: • sea level pressure: P ($\xi, \eta, scene_i$),	
• zonal wind speed component at 10 meter height: $u_{10}(\xi, \eta, scene_i)$	
• meridional wind speed component at 10 meter height: $v_{10}(\xi, \eta, scene_i)$	
• surface wind speed at 10 meter height: $w_{s_{10}}(\xi, \eta, scene_i)$	
• wind direction azimut: $\varphi_w(\xi, \eta, scene_i)$	
• sea surface temperature: $T_s(\xi, \eta, scene_i)$	
• Air temperature at 2m height: $T_{air_{am}}(\xi,\eta,scene_i)$	
• *cloud water mixing ratio at geopential z: $q_w(\xi, \eta, scene_i, z)$,	
• *atmospheric temperature at geopential z :T (ξ , η , scene _i , z)	
• *relative humidity at geopotential height: $r(\xi, \eta, scene_i, z)$	
Note that the last three variables () are vertical profile (function of altitude z) of atmospheric conditions. Currently they ARE NOT included into the SMOS/ECMWF auxilliary datasets. Indeed, in the latter they are provided as vertically integrated variables. In tropical and extratropical storm, the vertical gradients cannot be totally neglected. In our current algorithm version we use estimate from the NCEP GFS 6-hourly products.	

Verification Method In	Inspection
Reference in SoWSet	Section 5.1.6

STORM-RB-DREQ-107: SMOS ECMWF Data requirements required by the project for a NRT demonstration

Following the current version of our algorithm, the SMOS data provision requirements for an NRT demonstration into the SMOS ground Segment shall include additional geophysical data from additional sources (e.g; World Ocean Atlas) include:

- WOA2005 sea surface salinity climatology: SSS_{clim}(ξ, η, scene_i)*
- a landmask (in our current breadboarded version of the algorithm we use an USGS mask to derive a flag landmask(ξ,η, scene_i)=0 if land; =1 if ocean)
- a sea-ice concentration (in our current breadboarded version of the algorithm we use SSM/I concentration products delivered by Ifremer/cersat http://cersat.ifremer.fr/data/tools-and-services/quicklooks/sea-ice/ssm-i-sea-ice-concentration-maps)

*In addition to the SSS climatology, we are now considering the 10-days SMOS composite Level 3 SSS data averaged over the 10 days preeceeding the storm passages. SSS estimate errors under storm can indeed have a non-negligible impact on the retrieved wind speed in very strong SSS gradient area, like in the Amazon plume or fresh-pool of the East Pacific.

Verification Method	Inspection
Reference in SoW	Section 5.1.6

4.6 Promotion

Objectives

To consolidate and promote the project outcomes at an open scientific workshop and close the project

The detail requirements to meet these objectives are:

STORM-RB-DREQ-108: SMOS+ STORM Evolution Workshop	
An open invitation SMOS+ STORM Evolution Workshop will be organised by	
the project to present and discuss the findings of the project with the scientific	
community. The meeting shall be widely promoted, advertised and arranged at	
least 12 months in advance	
Verification Method	Inspection
Reference in SoW	Section 5.1.7
Reference in Sow	Section 5.1./

STORM-RB-DREQ-109: SMOS+ STORM Evolution Workshop proceedings		
A Workshop Proceedings(WKP) document that provides a reference document for		
the workshop (this could be in the form of a monograph or an article) will be		
written		
Verification Method	Inspection	
Reference in SoW	Section 5.1.7	

STORM-RB-DREQ-110: Study Final Report

The project will write a Final Report (FR) including :

- Introduction
- A complete overview of the project (aims, design, development, implementation, data processing, analysis, and conclusions). This section may be reported in the form of a Scientific Journal Article.
- A description of the SMOS+ STORM Evolution Workshop proceedings and final conclusions. This section may be reported in the form of a Scientific Journal Article.
- A Scientific Roadmap (SR) for future activities that **shall**:
 - a. Provide a critical analysis of all the feedbacks from scientists and institutions that have accessed SMOS+ STORM Evolution products,
 - b. Identify potential strategies for integrating the development methods and models into existing large scientific initiatives and operational institutions,
 - c. Define a scientific development strategy improving the development methods and products,
 - d. Identify scientific and technical priority areas to be addressed in potential future projects in support of ocean surface salinity.
- Summary and conclusions
- References

Any other sections required reporting on the work performed and outcomes of the SMOS+ STORM Evolution project

Verification Method	Inspection
Reference in SoW	Section 5.1.7

5. Compliance Matrix

The table below shows the mapping between the numbered requirements given in section 4 to 5 of [SOW] and the numbered requirements given in this document

	SoW Requirement	RB Requirement			
SoW ID	SoW Requirement text	RB ID			
[REQ-1.] Section 4.1	The team will improve and consolidate our theoretical understanding of the L-band signal response and physical properties that can be inferred over the ocean during the passage of Tropical Cyclone (TC) and Extra- Tropical Cyclone (ETC) systems.	STORM-RB-SREQ-01 STORM-RB-DREQ-01 STORM-RB-DREQ-02 STORM-RB-DREQ-03 STORM-RB-DREQ-04 STORM-RB-DREQ-19 STORM-RB-DREQ-20			
Section 4.1 [REQ-2.]	The team will evolve, implement and validate the STSE SMOS+STORM feasibility project Geophysical Model Function (GMF) and retrieval algorithm for high wind speed conditions.	STORM-RB-SREQ-02 STORM-RB-DREQ-05 STORM-RB-DREQ-06 STORM-RB-DREQ-07 STORM-RB-DREQ-09 STORM-RB-DREQ-09 STORM-RB-DREQ-10 STORM-RB-DREQ-11 STORM-RB-DREQ-11 STORM-RB-DREQ-12 STORM-RB-DREQ-13 STORM-RB-DREQ-14 STORM-RB-DREQ-15 STORM-RB-DREQ-15 STORM-RB-DREQ-17 STORM-RB-DREQ-18			
Section 4.1 [REQ-3.]	The project members will systematically produce and validate L-band SMOS high wind speed products with uncertainty estimates for ETC and TC conditions over the entire SMOS Mission archive.	STORM-RB-SREQ-03 STORM-RB-DREQ-31 STORM-RB-DREQ-41 STORM-RB-DREQ-42 STORM-RB-DREQ-42 STORM-RB-DREQ-43 STORM-RB-DREQ-44 STORM-RB-DREQ-45 STORM-RB-DREQ-46 STORM-RB-DREQ-50 STORM-RB-DREQ-50 STORM-RB-DREQ-52 STORM-RB-DREQ-54 STORM-RB-DREQ-55 STORM-RB-DREQ-55 STORM-RB-DREQ-56 STORM-RB-DREQ-58 STORM-RB-DREQ-59 STORM-RB-DREQ-59 STORM-RB-DREQ-60 STORM-RB-DREQ-61 STORM-RB-DREQ-62 STORM-RB-DREQ-62			
Section 4.1 [REQ-4.]	The consortium will develop, implement and validate new blended multi-mission oceanic wind speed products with uncertainty estimates incorporating SMOS+ STORM Evolution L-Band measurements at high-wind speeds for TC and ETC events.	STORM-RB-SREQ-04 STORM-RB-DREQ-30 STORM-RB-DREQ-31 STORM-RB-DREQ-32 STORM-RB-DREQ-33 STORM-RB-DREQ-34 STORM-RB-DREQ-35 STORM-RB-DREQ-36 STORM-RB-DREQ-37 STORM-RB-DREQ-38			

41

		STOPM PR DPFO 20
		STORM-RD-DREQ-39
		STORM-RB-DREQ-40
		STORM-RB-DREQ-47
		STORM-RB-DREQ-49
		STORM-RB-DREQ-51
		STORM-RB-DREQ-53
		STORM-RB-DREQ-58
		STORM-RB-DREQ-59
		STORM-RB-DREO-60
		STORM-RB-DREO-61
		STORM-RB-DREO-62
		STORM-RB-DREO-62
Section	The project team members will generate a global	STORM RD DRIQ 03
Section	detebage of TO and ETO events even the assen surface	STORM-RD-SKEQ-05
4.1	database of TC and ETC events over the ocean surface	STORM-RB-DREQ-41
[REQ-5.]	with SMOS data and characterize each event using	STORM-RB-DREQ-42
	diverse Earth Observation and other observations in	STORM-RB-DREQ-43
	synergy.	STORM-RB-DREQ-44
		STORM-RB-DREQ-45
		STORM-RB-DREQ-46
		STORM-RB-DREQ-47
		STORM-RB-DREO-48
		STORM-RB-DREO-49
		STORM-RB-DREO-50
		STORM-RB-DREO-51
		STORM-RD-DREQ-51
		STORM-RD-DREQ-52
		STORM-RB-DREQ-53
		STORM-RB-DREQ-54
		STORM-RB-DREQ-55
		STORM-RB-DREQ-56
-		STORM-RB-DREQ-57
Section	The research conducted by the project team will improve	STORM-RB-DREQ-57 STORM-RB-SREQ-06
Section 4.1	The research conducted by the project team will improve our understanding and parameterization of ocean-	STORM-RB-DREQ-57 STORM-RB-SREQ-06 STORM-RB-DREQ-19
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC	STORM-RB-DREQ-57 STORM-RB-SREQ-06 STORM-RB-DREQ-19 STORM-RB-DREQ-20
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-SREQ-06 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-SREQ-06 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-SREQ-06 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-06 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-24
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-06 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-06 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-06 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-26 STORM RB-DREQ-27
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-25 STORM-RB-DREQ-25 STORM-RB-DREQ-27 STORM-RB-DREQ-27 STORM-RB-DREQ-27
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-06 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-27 STORM-RB-DREQ-28
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-27 STORM-RB-DREQ-28 STORM-RB-DREQ-29
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-27 STORM-RB-DREQ-28 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-26 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-27 STORM-RB-DREQ-28 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-66
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-27 STORM-RB-DREQ-28 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-67
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-27 STORM-RB-DREQ-28 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-67 STORM-RB-DREQ-68
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-25 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-28 STORM-RB-DREQ-28 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-67 STORM-RB-DREQ-68 STORM-RB-DREQ-69
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-26 STORM-RB-DREQ-28 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-66 STORM-RB-DREQ-68 STORM-RB-DREQ-69 STORM-RB-DREQ-69 STORM-RB-DREQ-69
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-27 STORM-RB-DREQ-28 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-66 STORM-RB-DREQ-67 STORM-RB-DREQ-69 STORM-RB-DREQ-69 STORM-RB-DREQ-70 STORM-RB-DREQ-70
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-27 STORM-RB-DREQ-28 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-66 STORM-RB-DREQ-69 STORM-RB-DREQ-69 STORM-RB-DREQ-70 STORM-RB-DREQ-71 STORM-RB-DREQ-71 STORM-RB-DREQ-72
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-26 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-66 STORM-RB-DREQ-67 STORM-RB-DREQ-69 STORM-RB-DREQ-69 STORM-RB-DREQ-70 STORM-RB-DREQ-71 STORM-RB-DREQ-72 STORM-RB-DREQ-72
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-26 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-66 STORM-RB-DREQ-67 STORM-RB-DREQ-69 STORM-RB-DREQ-69 STORM-RB-DREQ-70 STORM-RB-DREQ-71 STORM-RB-DREQ-73 STORM-RB-DREQ-73 STORM-RB-DREQ-73
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-26 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-66 STORM-RB-DREQ-67 STORM-RB-DREQ-69 STORM-RB-DREQ-69 STORM-RB-DREQ-70 STORM-RB-DREQ-71 STORM-RB-DREQ-73 STORM-RB-DREQ-74 STORM-RB-DREQ-74
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-26 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-66 STORM-RB-DREQ-68 STORM-RB-DREQ-69 STORM-RB-DREQ-69 STORM-RB-DREQ-70 STORM-RB-DREQ-70 STORM-RB-DREQ-71 STORM-RB-DREQ-73 STORM-RB-DREQ-74 STORM-RB-DREQ-75 STORM-RB-DREQ-75
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-26 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-66 STORM-RB-DREQ-67 STORM-RB-DREQ-68 STORM-RB-DREQ-69 STORM-RB-DREQ-70 STORM-RB-DREQ-70 STORM-RB-DREQ-71 STORM-RB-DREQ-72 STORM-RB-DREQ-73 STORM-RB-DREQ-74 STORM-RB-DREQ-75 STORM-RB-DREQ-75 STORM-RB-DREQ-76
Section 4.1 [REQ-6.]	The research conducted by the project team will improve our understanding and parameterization of ocean- atmosphere coupling and mixed-layer dynamics for ETC and TC cases.	STORM-RB-DREQ-57 STORM-RB-DREQ-19 STORM-RB-DREQ-19 STORM-RB-DREQ-20 STORM-RB-DREQ-21 STORM-RB-DREQ-22 STORM-RB-DREQ-23 STORM-RB-DREQ-23 STORM-RB-DREQ-24 STORM-RB-DREQ-25 STORM-RB-DREQ-26 STORM-RB-DREQ-26 STORM-RB-DREQ-29 STORM-RB-DREQ-29 STORM-RB-DREQ-64 STORM-RB-DREQ-64 STORM-RB-DREQ-65 STORM-RB-DREQ-66 STORM-RB-DREQ-66 STORM-RB-DREQ-69 STORM-RB-DREQ-69 STORM-RB-DREQ-70 STORM-RB-DREQ-70 STORM-RB-DREQ-71 STORM-RB-DREQ-72 STORM-RB-DREQ-73 STORM-RB-DREQ-74 STORM-RB-DREQ-75 STORM-RB-DREQ-75 STORM-RB-DREQ-77

~ · ·		
Section	The analyses conducted in the frame of the project will	STORM-RB-SREQ-07
4.1	demonstrate the utility, performance and impact of	STORM-RB-DREQ-78
[REQ-7.]	SMOS+ STORM Evolution products on TC and ETC	STORM-RB-DREQ-79
	prediction systems in the context of maritime	STORM-RB-DREQ-80
	applications.	STORM-RB-DREQ-81
		STORM-RB-DREQ-82
		STORM-RB-DREQ-83
		STORM-RB-DREQ-84
		STORM-RB-DREQ-85
		STORM-RB-DREQ-86
		STORM-RB-DREQ-87
		STORM-RB-DREQ-88
		STORM-RB-DREQ-89
		STORM-RB-DREQ-90
		STORM-RB-DREQ-91
		STORM-RB-DREQ-92
		STORM-RB-DREQ-93
		STORM-RB-DREQ-94
		STORM-RB-DREO-95
		STORM-RB-DREO-96
		STORM-RB-DREO-97
		STORM-RB-DREO-98
		STORM-RB-DREO-99
		STORM-RB-DREO-100
		STORM-RB-DREO-101
		STORM-RB-DREO-102
Section	The consortium will promote the SMOS mission and	STORM-RB-SREO-08
4.1	related products through the SMOS+ STORM Evolution	STORM-RB-DREO-67
[REO-8.]	project.	STORM-RB-DREO-68
		STORM-RB-DREO-74
		STORM-RB-DREO-73
		STORM-RB-DREO-76
		STORM-RB-DREO-77
		STORM-RB-DREO-82
		STORM-RB-DREO-84
		STORM-RB-DREO-02
		STORM-RB-DREO-02
		STORM-RB-DREO-101
		STORM-RB-DREQ-102
		STORM-RB-DREQ-102
		STORM-RB-DREQ-104
		STORM-RB-DREQ-105
		STORM IN DRIV 103
Section	The team will submit scientific peer-reviewed journal	STORM-RR-SRFO-00
<u> </u>	article(s) documenting the results of the SMOS+ STORM	STORM-RB-DRFO-67
[REO-0]	Evolution project	STORM-RB-DRFO-79
[[[[]]]	Liviation project.	STORM_RB_DRFO_76
		STORM-RB-DREQ-70
		STORM-RB-DREQ-70 STORM-RB-DREQ-83 STORM-RB-DREQ-02
		STORM-RB-DREQ-70 STORM-RB-DREQ-83 STORM-RB-DREQ-92 STORM-RB-DREQ-101

6. Appendix 1 Summary description of all data products required by the project

This annex gives data product descriptions for all data products currently being proposed for inclusion in SMOS+STORM.

6.1 SMOS L1B data

Product	SMOS L1BSMOS Fourier component of				
	the brightness temperature				
Provider	SMOS Data Processing Ground Segment (DPGS)				
Description	The SMOS Level-1B product is	s the output of the image			
	reconstruction of the observation	tions and comprises the			
	Fourier component of the brig	htness temperature in the			
	antenna polarization referenc	e frame, hence brightness			
	temperatures. Level-1B corres	sponds to one temporal			
	measurement, i.e. the whole fi	eld of view– one integration			
	time – and is often called a 'sn	apshot' as for a camera.			
Source Data	SMOS Level 1B from DPGS				
Source Data Format	DBL				
Reprocessing	DPGS reprocessings ended in				
Source of Error	L1 calVal team analyses				
Information	L2 OS calVal team analyses				
Expected accuracy	The radiometric accuracy is fr	om 2.6 K at boresight to			
	about 4-5 K on the swath edge	25			
Expected resolution	The products are given in an H	Equal-area grid system (ISEA			
	4H9 - Icosahedral Snyder Equ	al Area projection) with an			
	oversampled spatial resolutio	n of about ~15 km. We			
	consider here T _B data reconst	ructed in the extended field of			
	view (FOV) domain of the ante	enna for which the swath			
	width is approximately 1200 km (see Fig. 6 in Font <i>et al.</i>				
	2010). The actual spatial resolution of the reconstructed T _B				
	data varies within the FOV from \sim 32 km at boresight to				
	about \sim 80 km at the edges of the swath (43 km on average				
	over the field of view). The probing earth incidence angle is				
	ranging from nadir to about 60°				

6.2 SMOS ECFI data

Product	SMOS ECFI data SMOS			
Provider	SMOS Data Processing Ground Segment (DPGS)			
Description	SMOS ECFI dataSMOSSMOS Data Processing Ground Segment (DPGS)For a given scene <i>i</i> , a series of geometrical and auxilliary geophysical parameter are determined at each antenna cosine director coordinate ξ , η and include•Latitude of the earth target: $lat(\xi, \eta, scene_i)$ •Longitude of the earth target: $lat(\xi, \eta, scene_i)$ •Longitude of the earth target: $lot(\xi, \eta, scene_i)$ •Iook direction azimut at the target $\theta(\xi, \eta, scene_i)$ •look direction azimut at the target $\phi(\xi, \eta, scene_i)$ •look direction azimut at the target $\phi(\xi, \eta, scene_i)$ •right ascension of the earth specularly reflected path in the B1950 sky coordinate system $ra(\xi, \eta, scene_i)$ •declination of the earth specularly reflected path in the B1950 sky coordinate of the sun ξ_{sun}, η_{sun} (scene_i) and aliases•cosine director coordinate of the moon $\xi_{moon}, \eta_{moon}(scene_i)$ •cosine director coordinate of the earth specularly reflected path towards the sun $\xi^{spec}_{moon}, \eta^{spec}_{sun}(scene_i)$ •cosine director coordinate of the earth specularly reflected path towards the moon $\xi^{spec}_{moon}, \eta^{spec}_{moon}(scene_i)$ •a landmask flag obtained from USGS mask landmask($\xi, \eta, scene_i$)=0 if land; =1 if ocean a sea-ice flag obtained from USGS mask DBL•Data process may be a stand from USGS mask DBL			
Source Data	The geometrical parameters are obtained using Earth CFI software			
	The landmask is obtained from USGS mask			
Source Data Format	DBL			
Reprocessing				
Source of Error				
Information				
Expected accuracy				
Expected resolution				

47

6.3 SMOS Geophysical Auxilliary Informations

	 ECMWF WAM model significant wave height: H_s(ξ, η, scene_i) We use a linear interpolation in time and bi-linear interpolation in space to co-register these auxiliiary geophysical data with SMOS data. 		
Source Data	ECMWF, NCEP and NODC (WOA)		
Source Data Format	Buffer and netcdf		
Reprocessing	-		
Source of Error	-		
Information			
Expected accuracy	-		
Expected resolution	-		

6.4 TC tracks

IBtrack TC tracks data				
NOAA International Best Track Archive for Climate				
al 2010) wargion w02r05 and	available at			
http://www.ncdc.noaa.gov/ihtracs/				
The positions and along track maximum winds of tropical				
cyclones are obtained from the International Rost Track				
Archive for Climate Stewardship (IBTrACS) tropical cyclone				
dataset (Knapp et al. 2010), version v03r05 and available at				
http://www.ncdc.noaa.gov/ik	otracs/. This reanalysis covers			
the period 1950-2013. The IB	TrACS dataset records the 10-			
min maximum wind speed along with tropical cyclone track				
locations at 6-h intervals, which we convert to 1-min values				
by dividing by 0.88 (Knapp et al. 2010). This conversion				
allows wind speeds from IBT	rACS data to be compared on			
the Saffir–Simpson scale, which uses a 1-min maximum				
wind speed definition.				
Treat data include (hours				
Desition				
Position, Maximum Sustained Winds				
Maximum Control Procession				
Minimum Central Pressure, Storm Nome				
Storm Name, Dadius of Maximum Winds				
Radius of Outermost Closed Is	sobar			
The IBTrACS project combine	s information from numerous			
tronical cyclone datasets:				
IBtrackTC tracks dataNOAA International Best Track Archive for ClimateStewardship (IBTrACS) tropical cyclone dataset (Knapp et al. 2010), version v03r05 and available at http://www.ncdc.noaa.gov/ibtracs/.The positions and along track maximum winds of tropical cyclones are obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone dataset (Knapp et al. 2010), version v03r05 and available at http://www.ncdc.noaa.gov/ibtracs/. This reanalysis covers the period 1950-2013. The IBTrACS dataset records the 10- min maximum wind speed along with tropical cyclone track locations at 6-h intervals, which we convert to 1-min values 				

	RSMC Miami,		
	RSMC Honolulu,		
	RSMC Tokyo,		
	RSMC New Delhi,		
	RSMC La Reunion,		
	RSMC Nadi,		
	TCWC Perth,		
	TCWC Darwin,		
	TCWC Brisbane,		
	TCWC Wellington,		
	CMA-Shanghai Typhoon Institute,		
	Joint Typhoon Warning Center,		
	Hong Kong Observatory,		
	NCDC DSI-9635		
	NCDC DSI-9636		
	UCAR ds824.1		
Source Data Format	Netcdf		
Source of Error	NOAA/WMO check the quality of storm inventories,		
Information	positions, pressures, and wind speeds, passing the		
	information on to the user		
Expected accuracy	-		
Expected resolution	6 hourly along track		
-			

6.5 ETC tracks

Product	ETC tracks	Extra-Tropical cyclone track		
Provider Description	IdataNERC through the NERC Unit for Thematic InformationSystems (NUTIS) and the Universities Global AtmosphericModelling Progamme (UGAMP).Kevin Hodges from University of Reading(http://www.met.reading.ac.uk/~dispersion/track/docs.html):The tracks are from the ERA interim re-analysis 6-hourly andare based on the vorticity but they have the MSLP and 925hPaand 10 m height winds attached.			
	They cover the periods Year 2010-2014 Data are splitted into Northern and Southern Hemisphere and per months			
Source Data	ECMWF ERA interim re-analysis 6-hourly			
Source Data Format	Ascii			
Reprocessing	-			
Source of Error	-			
Information				
Expected accuracy	-			

6.6 AMSR-2 Data

Product	AMSR-2 L1B TBs Brightness Temperatures from AMSR-2						
Provider	Japan Aerospace Exploration Agency (JAXA) GCOM-W1						
	Data Providing Service (https://gcom-w1.jaxa.jp)						
Description	The great success of AMSR-E (2002-2011) revolved to the design of its successor AMSR2, launched on the Japanese GCOM-W1 satellite on 18 May 2012. AMSR-2 is the Advanced Microwave Scanning Radiometer 2 on board GCOM-W1 satellite which substituted Aqua AMSR-E and was launched mid-may 2012. The antenna of AMSR2 rotates once per 1.5 seconds and obtains data over a 1450 km swath. This conical scan mechanism enables AMSR2 to acquire a set of daytime and nighttime data with more than 99% coverage of the Earth every 2 days. The AMSR2 sensor characteristic for each frequency channel is given in Table						
	Center	Band	Pol.	Beam	Gre	ound	Sampling
	Freq.	Freq. width w		width	res	5.	interval
	GHz	MHz		degree	km	1	km
	6.925/7.3	350	V/H	1.8	35	x 62	10
	10.65	100		1.2	24	<u>x 42</u>	
	18.7	200		0.65	14	x 22	
	23.8	0.75	15	x 26			
	36.5 1000 0.35 7 x 12						
	89.0	3000		0.15	3 x	5	
	 Table 1. AMSR2 channel Set L1B data include: Swath data with geolocation information Brightness temperatures ½ orbit starting from northern/southern-most latitudes 						
Source Data	Japan Aeros Data Providi	pace Ex ing Serv	ploratio	on Agenc	y (JA) m-w1	KA) GC Liaxa i	OM-W1
Source Data Format	All products	are in F	$\frac{100}{10F5}$ fo	rmat		ijunuij	F1
Reprocessing	producto						
Source of Error	JAXA						
Information							
Expected accuracy	±1.5 K						
Expected resolution	Center Ground						
			Freq.	res			

50

51

GHz	km
6.925/7.3	35 x 62
10.65	24 x 42
18.7	14 x 22
23.8	15 x 26
36.5	7 x 12
89.0	3 x 5

6.7 SCATTEROMETER data

Product	Scatterometer Winds	
Provider	KNMI	
Description	Scatterometer winds (equivalent neutral wind speed in m/s and direction (degrees) from Seawinds, ASCAT and OSCAT. OSCAT data is delivered on experimental demonstration basis	
Source Data	ASCAT and OSCAT raw satellite data	
Source Data Format	BUFR and netCDF (part of the data)	
Reprocessing	No (unless for selected cases)	
Source of Error	OSI SAF	
Information		
Expected accuracy	Better than 2 m/s in wind component RMS with a bias of less than 0.5 m/s in wind speed for wind speed below 30 m/s.	
Expected resolution	ASCAT 25 km and 12,5 km, and OSCAT 50 km (plans exist for 25-km OSCAT)	

6.8 SFMR flight data

Product	SFMR flight data		
Provider	NOAA/AOML/HRD		
Description	The Hurricane Research Divis	ion collects Stepped	
	Frequency Microwave Radiom	neter (SFMR) data sets on	
	some of the tropical cyclones they fly into. They collect		
	these data sets from the <u>NOAA P3 aircraft</u> that are equiped		
	with the sensors and process t	them at the end of each Field	
	Program.		
	Starting in 2007, SFMR data is also available from USAF		
	flights. The processed surface winds and rain rate from the		
	SFMR are included in the data files for each mission, as well		
	as the raw temperature outputs for each frequency.		
	Similarly, SFMR data from NOAA flights is included in the		
	NetCDF version of each flight's data.		
	-		

Source Data	ftp.aoml.noaa.gov/ hrd/pub/data/sfmr/	
Source Data Format	NetCDF	
Reprocessing		
Source of Error	Uhlhorn, E. and P. Black, 2003: Verification of remotely	
Information	sensed sea surface winds in hurricanes. J. Atmos. Ocean.	
	Tech., v. 20, 99-116.	
Expected accuracy	\sim 4 m/s surface wind speed accuracy- validated against the	
	co-located observed dropsonde surface wind speed	
	measurements from 10 to 50 m/s	
Expected resolution	Radial resolution ~3km	

6.9 Altimeter SWH & Wind data

Product	Altimeter Wind/Wave	Significant Wave Height	
	Products	Surface Wind	
Provider	Ifremer via GlobWave: http://	/globwave.ifremer.fr/	
Description	Inter-calibrated wave related	parameters from all available	
	satellite altimetry missions in	cluding consistent quality flag	
	and error characterization, to	gether with ancillary data	
	from ECMWF numerical mode	els such as distance to coast,	
	bathymetry and sea surface te	emperature	
	Near-surface wind speeds (U_1	0) from satellite altimeter	
	backscatter data are estimated	d during high wind conditions	
	Using the algorithm of Quilfen	et al., 2011	
Source Data	ESA Envisat RA: 26/08/2002-2012		
	CNES/NASA Jason-1: 15/01/2002 -3/07/2013		
	CNES/NASA Jason-2: 01/12/2008 onwards		
	SARAL/AltiKa: 03/2013-onwards		
Source Data Format	CF compliant NetCDF, as defined within the GlobWave		
	project		
Reprocessing	Reprocessing to apply High wind algorithm		
Source of Error	GlobWave Validation reports (http://www.globwave.org)		
Information			
	Yves Quilfen, Doug Vandemark, Bertrand Chapron, Hui		
	Feng, and Joe Sienkiewicz, 2011: Estimating Gale to		
	Hurricane Force Winds Using the Satellite Altimeter. J.		
	Atmos. Oceanic Technol., 28 , 453–458.		
	doi: <u>http://dx.doi.org/10.1175/JTECH-D-10-05000.1</u>		
Expected accuracy	Approx. 20 cm significant wave height– provided within		

	data stream ~2m/s for wind speed up to 30 m/s
Expected resolution	Equal to the altimeter footprint, approc 5-10km, along- track

6.10 Buoy WS data (NDBC, MeteoFrance, ..)

Product	Buoy Winds	Surface winds	
Provider	Ifremer via GlobWave: http://globwave.ifremer.fr/		
Description	Buoy data mostly come from the National Data Buoy Center (NDBC) located along the coast of United States of America, the Tropical Atmosphere Ocean (TAO) located in the Equatorial Pacific array, and from Météo-France and UK Met office (MF-UK) located off the English, Ireland, and French coasts. NDBC and MF-UK provide hourly data, while TAO provide 10-min measurements. The latter are temporally averaged to estimate hourly buoy parameters. The buoy data include: wind speed at the anemometer height,		
	wind direction (or the corresponding zonal and meridional wind components), sea surface and air temperatures, and relative humidity (or dew point).		
	As the satellite wind retrievals correspond to wind observations at 10m above the ocean surface, the buoy winds are converted to 10-m height using (1/7) power expression (Hakeem, 1993).		
Source Data	 Data for Europe is currently provided by the POSEIDON network provided by HCMR, Puertos del Estados – a Spanish government organisation that has several measurement networks to provide information about the physical features (including wave behaviour), UK Met Office which owns a network of buoys covering areas in regional UK waters and the Atlantic Ocean and, Meteo- France - the French national meteorological organisation which owns a network of buoys covering areas off the coast of France in the Mediterranean and Atlantic Oceans. Other networks include the NODC - the National Oceanographic Data Centre owns one of the largest buoy archives in the world. The archive contains several hundred US-owned buoys across the world measuring a multitude of wave parameters, and CDIP - the Coastal Data Information Program measures, analyses, archives and disseminates coastal environment data for use by coastal 		

53

	coasts which measures wave parameters.	
Source Data Format	Netcdf	
Reprocessing		
Source of Error	http://globwave.ifremer.fr/	
Information		
Expected accuracy	<1 m/s but usually unavailable in hurricane force	
Expected resolution	Hourly or 10 min	

6.11 TRMM

Product	TRMM3B42	Rain Rate
Provider	NASA GSFC DISC http://disc.sci.gsf	c.nasa.gov/precipitation/
Description	TheTRMM0.25°(http://disc.sci.gsfc.nasa.gov/preciEADME/TRMM3B42readme.shtmaccumulatedrainfallundercycloTRMMmultisatelliteprecipitatgeostationaryinfraredobservationIt is calibrated to match monthly sate	3B42 daily product pitation/documentation/TRMM R nl) is used to estimate ones. This product is a blend of tion analysis and of rainfall as when the former is not available. atellite/rain gauge analyses.
Source Data	TRMM-adjusted merged-infrared (TRMM VIRS TRMM-TMI GMS, GOES-E, GOES-W, Meteosat-7, Meteosat-5, NOAA-12 data.	IR) precipitation
Source Data Format	HDF	
Reprocessing		
Source of Error	Huffman G. J., D. T. Bolvin (2012). T	'RMM and other data precipitation
Information	data set documentation (ftp://mes	<u>0-</u>
	a.gsfc.nasa.gov/pub/trmmdocs/3B	42 3B43 doc.pdf).
	Lonfat M., F. D. Marks, and S. S. Che distribution in tropical cyclones us Measuring Mission (TRMM) microv perspective, <i>Mon. Wea. Rev.</i> , 132 , 1 doi: <u>http://dx.doi.org/10.1175/157</u> 0493(2004)132 < 1645:PDITCU > 2 Liang H. and F. J. Zipser, 2010:	n (2004), Precipitation ing the Tropical Rainfall wave imager: A global 645–1660, <u>20-</u> 2.0.CO;2.
	cyclones to the global precipitation	on from 8 seasons of TRMM

54

data: Regional, seasonal, and interannual variations. J.			
Climate 23 1526–1543			
<i>Cumule</i> , 25 , 1520–1545.			
Hu, A. and G. A. Meehl, 2009: Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport. <i>Geophys. Res. Lett.</i> , 36 ,L03702, doi:10.1029/2008GL036680.			
Chen Y F F Fhert K I F Walsh and N F			
Davidson (2013) Evaluation of TRMM 3B42 precipitation estimates			
of tronical cyclone rainfall using PACRAIN data I Geophys Res			
Atmos $1182184-2196$ doi:101002/jgrd 50250			
This product has already been used to estimate rainfall under TCs			
by Jiang and Zinsor (2010) and Hu and Moobl (2009) and is used in			
the National Appropriatics and Space Administration Hurricano Data			
Analysis Tool (http://disc.sci.gsfc.pasa.gov/daas			
hin /hurricano data analysis tool nl) Pacontly Chon at al (2012)			
bayo compared TC rainfall from 2B42 daily data to gauge			
observations in the Dacific The 3B42 TC rainfall has some biases on			
coastal and island sites but is accurate on atoll sites, suggesting that			
this dataset is suitable for the analysis of TC rainfall over the open			
this dataset is suitable for the analysis of TC familian over the open			
ocean.			
Spatial coverage extends from 50 degrees south to 50 degrees porth			
latitude			
0.25-degree snatial resolution			
3.Hourly			

6.12 WindSat

Product	RSS WindSat Da	RSS WindSat Data Products v7.0.1 Wind Speed & Rain Rate				
Provider	Remote Sensing Systems (ftp://ftp.remss.com/)					
Description	The WindSat Pol	arimetric Radiometer	was developed by th	ie Naval		
_	Research Labora	tory (NRL) Remote Se	ensing Division and tl	he Naval Center		
	for Space Techno	ology for the U.S. Navy	and the National Pol	lar-orbiting		
	Operational Envi	ronmental Satellite Sy	ystem (NPOESS) Inte	grated Program		
	Office (IPO). It was launched on January 6, 2003 aboard the Department of					
	Defense Coriolis satellite. WindSat was meant to demonstrate the					
	capabilities of a fully polarimetric radiometer to measure the ocean surface					
	wind vector from space. Prior to launch, the only instrument capable of					
	measuring ocean wind vectors were scatterometers (active microwave					
	sensors). In addition to wind speed and direction, the instrument can also					
	measure sea surface temperature, soil moisture, ice and snow					
	characteristics, water vapor, cloud liquid water, and rain rate.					
	Product					
	Name Product Description					

	Time	Minutes since midnight GMT Fractional hour of day GMT	
	Sea surface temperature	Temperature of top layer (skin) of water ~1 mm thick	
	10-m wind speed	Wind speed using 10.7 GHZ channels and above	
	10-m wind speed	Wind speed using 18.7 GHZ channels and above	
	Columnar atmospheric water vapor	Total gaseous water contained in a vertical column of the atmosphere	
	Columnar cloud liquid water	Total cloud liquid water contained in a vertical column of the atmosphere	
	Rain rate	Rate of liquid water precipitation	
	All-weather 10-m wind speed	Wind speed derived using all channels and three separate algorithms to obtain winds in all weather conditions	
	10-m wind direction	Oceanographic-convention wind direction, relative to north	
Source Data	WindSat		
Source Data	Binnary files		
Format	_		
Reprocessin	v7.01		
g		0	
Source of	Remote Sensing Systems:		
Information	http://images.remss.com/papers/windsat/rss_windsat_report_on_nrl_win		
mormation	http://images.remss.com/napers/rsspubs/RSS.Rain Validation_Report.pdf		
Expected	Wind speed ~1-1.5 m/s		
accuracy	Wind direction:	~50°-20° for WS<5 m/s	
	Wind direction: <20° for WS >5 m/s		
	Rain Rate: satell	ite and buoy rain rates agree to 3.4%	
Expected	Daily products -	orbital data mapped to 0.25 degree grid div	vided into 2 sets
resolution	of maps based on ascending and descending passes		

		•	1	
Product	SSMI/I	F15,F16 & F17		Wind Speed & Rain Rate
Provider	Remote	emote Sensing Systems (ftp://ftp.remss.com/)		
Description	The Spe	The Special Sensor Microwave Imager (SSM/I) and the Special Sensor		
	Microw	Microwave Imager Sounder (SSMIS) are satellite passive microwave		
	radiome	meters. This series of instruments has been carried onboard Defense		

6.13 SSMI/I F15,F16 & F17

	Meteorological Satellite Program (DMSP) satellites since 1987. These are near-polar orbiting satellites. The instruments are referred to by satellite number starting with F08 and are listed in the table below. Currently operating instruments are: F15, F16, F17 and F18. Ocean measurements we derive from the radiometer observations include Surface Wind Speed, Atmospheric Water Vapor, Cloud Liquid Water, and Rain Rate.			
	Product Name	Product Description		
	10-m surface wind speed	Wind speed using 18.7 GHz channel and above		
	Columnar atmospheric water vapor	Total gaseous water contained in a vertical column of the atmosphere		
	Columnar cloud liquid water	Total cloud liquid water contained in a vertical column of the atmosphere		
	Rain rate	Rate of liquid water precipitation		
Source Data	SSMI/F15, F16	& F17		
Source Data Format	Binnary files			
Reprocessing	v7.01			
Source of	Remote Sensing Systems:			
Error	http://images.remss.com/papers/rsspubs/RSS_Rain_Validation_Report.p			
Information				
Expected	Wind speed ~1-1.5 m/s			
accuracy	Rain Rate: sate	arbital data managed to	agree to 3.4%	
resolution	sets of maps ba	Daily products -orbital data mapped to 0.25 degree grid divided into 2 sets of maps based on ascending and descending passes		

6.14 SAR Wave data

Product	Sentinel1 wave mode Level2 OCN product	Wave spectra and integrated wave partition parameters (Hs,Wl,Dir)	
Provider	ESA/ODL		
Description	Wave spectra retrieved from Sentinel1 wave mode observations are part		
	of a nominal Level2 OCN product that will be generated by the IPF in the		

	ground segment. However, L2 products will not be distributed before the end of Level2 cal-val phase at the beginning of 2015. ODL will process Level2 wave spectra from L1 data for the second semester of 2014 in order to get some first dataset to play with.
Source Data	Sentinel1 SAR wave mode
Source Data	Netcdf
Format	
Reprocessing	Early processing by ODL then nominal ESA product.
Source of	Sentinel1 Level2 cal-val report to be available by end of 2014.
Error	
Information	
Expected	Better that 5% accuracy on the dominant wavelength and 5° in direction.
accuracy	
Expected	One imagette every 100km
resolution	

6.15 Met Office model background fields

Product	UM background fields		
Provider	Met Office		
Description	Global model background fields are short range (T+6 hrs) forecasts of the atmospheric state. These forecasts are produced as part of the routine operational suite using the Met Office Unified Model (UM) system. The required background fields are normally held in the Met Office archive for a period of 5 years.		
Source Data	Met Office forecasts		
Source Data	PP (post processing) format - proprietary file format for meteorological		
Format	data developed by the Met Office.		
Reprocessing	None		
Source of	Background error files are also archived.		
Error			
Information			
Expected	Various		
accuracy			
Expected	Expected model configuration for the study period:		
resolution	Horizontal resolution: N512, 0.35 x 0.23 degrees (25 km in mid-latitudes)		
	Vertical resolution: 70 vertical levels, lid \sim 80 km.		

6.16 SMOS wind speed

Product	SMOS wind speed	
Provider	SMOS+STORM project team	

Description	SMOS wind speed retrievals at 10m reference height as produced by the HWS algorithm. Observation data should include as a minimum: date, time, latitude, longitude, wind speed, brightness temperatures, plus relevant sensor parameters (e.g. incidence/azimuth angle) and QC/error information (e.g. RFI flags) to be agreed with the Met Office.
Source Data	SMOS wind speed retrievals
Source Data	NetCDF or ascii
Format	
Reprocessing	
Source of	Estimated error in wind speed (m/s)
Error	
Information	
Expected	TBD
accuracy	
Expected	TBD, but around 50km will be suitable
resolution	

6.17 Meteorological observations database

Product	Database of meteorological observations		
Provider	Met Office		
Description	For the purposes of data assimilation trials and verification a full range of all available meteorological observations will be required. These include both conventional observations and satellite observations as archived in the Met Office Meteorological DataBase (MetDB). Observations are archived for a period of at least 5 years.		
Source Data	Meteorological observations		
Source Data	BUFR, other		
Format			
Reprocessing	None		
Source of	Met Office diagnosed/assumed errors for each di	fferent type of	
Error	observation		
Information			
Expected	Various		
accuracy			
Expected	Various		
resolution			

6.18 SST and sea ice analysis

Product	OSTIA analyses	
Provider	Met Office	

Description	The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) will be required as boundary conditions for data assimilation trials with SMOS data. Daily OSTIA analyses of SST and sea ice are archived at the Met Office for a period of 5 years.	
Source Data	OSTIA	
Source Data	NetCDF	
Format		
Reprocessing	None	
Source of		
Error		
Information		
Expected	SST products have zero mean bias and an accuracy of ~ 0.57 K compared	
accuracy	to in situ measurements.	
Expected	Analysis on 1/20 ° grids (~ 6 km)	
resolution		

6.19 CLIPER (Climatology & Persistence)

Product	CLIPER		
Provider	Met Services / Met Office		
Description	Several meteorological centres who monitor TCs have developed models which forecast the tracks of TCs up to three days ahead using methods based on past climatology in the area and persistence. These are known as CLIPER models and are generally accepted as a benchmark against which NWP models can be assessed. The Met Office has obtained CLIPER software for all TC basins which has been incorporated into the TC verification scheme. Hence, for each NWP model analysis and forecast which is verified, the equivalent CLIPER forecast is also verified		
Source Data	CLIPER		
Source Data			
Format			
Reprocessing			
Source of			
Error			
Information			
Expected			
accuracy			
Expected			
resolution			