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Outline 

§  Description of High Wind Retrieval for Previous Ku-Band 
Scatterometers 

•  Currently the most accurate high wind speed data set is archived as storm-
centered data products separately from the nominal QuikSCAT and OceanSAT-2 
full swath data sets. 

§  Description of High Wind Retrieval for RapidScat 
•  Two different versions due to hardware malfunction 

§  RapidScat High Wind Examples 
§  Conclusions  
§  References 
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Description of High Wind Retrieval for 
Previous Ku-Band Scatterometers 
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Background	  

§  Goal: To optimize, produce, validate, and utilize ocean surface wind speed fields 
around all tropical cyclones (TCs) observed by QuikSCAT, OceanSAT-2, 
RapidScat, and ASCAT. 

§  Problem: Scatterometer winds in TCs are corrupted by rain and use empirical 
retrieval methods that were not optimized for high wind conditions. 

•  Rain contamination [Yueh and Stiles,2002] [Nie and Long, 2007]. 
•  Decreased sensitivity at high winds.[Fernandez et al, 2006],[Donelan et al, 

2004] 
•  Poorly trained GMFs for high winds due to large parameter space and  lack of 

ground truth 
§  Solution: Train a neural network	  to	  determine	  accurate	  TC	  winds	  for	  sca3erometer	  data	  

in	  the	  presence	  of	  rain.	  
§  Neural Networks are useful for approximating simple nonlinear mappings with more 

than three inputs for which ground truth is available. 
•  Lower dimensionality or linear problems are better handled with other 

techniques. 
•  Complex mappings (many different modes, etc) are difficult to train. 
•  Situations without ground truth can be handled using unsupervised techniques, 

but such solutions are often impractical. 
§  One can optimize a problem for a neural network solution by breaking it up into 

simpler sub-problems. 
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Synopsis	  of	  Technique	  

§  Using a simple neural network (Stiles et al , 2014), we fit a nonlinear mapping  
•  From 9 scatterometer measurements and one geometry indicator  
•  To wind speed.  

§  Inputs are: 
•    8 sets of backscatter values 

•  2 different azimuths,  
•  2 different polarizations,  
•  2 different spatial scales (12.5 and 87.5 km) 

•  a rain rate from the scatterometer noise channel [Ahmad et al, 2005]. 
•  cross track distance as a proxy for viewing geometry 
•  Information from latest of version (3) of QuikSCAT global wind retrieval product 

•  Speed corrected for rain  
•  Maximum likelihood speed (no correction for rain) 
•  Rain Impact quantity  

§  Ground truth speeds are from H*WIND data from 2005 Atlantic hurricanes. 
§  Structure employs a set of sub-networks to simplify the mappings needed. 
§  Attempt to correct wind direction in rain is left for future work. 

§  Nominal Maximum Likelihood direction retrievals are maintained. 

5 



How	  does	  it	  work?	  

§  The neural network estimates an optimal mapping between its 10 
inputs and its training ground truth (H*WIND). 

•  The resultant multi-dimensional mapping is hard to visualize 
§  The next few slides exemplify the information available to the neural 

network 
•  Showing Ku-band sigma-0 is sensitive to winds from 20-40 m/s 
•  For a specific case of MLE speed = 24-26 m/s and CTD = 400-450 km, 

We examine the information content of three parameters of interest ,  
•  Copol ratio = sum of HH NRCS / sum of VV NRCS 
•  sum sigma-0 = sum of all four NRCS observations 
•  QRAD rain rate = Estimate of Rain rate derived from QuikSCAT brightness 

temperature 
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Ku-band NRCS is sensitive to wind speed in 20-40 m/s range. 

§  In	  rainfree	  condi8ons	  (rain	  impact	  quan8ty	  <=	  2.5),	  QuikSCAT	  HH	  pol	  46	  degree	  
incidence	  NRCS	  values	  are	  sensi8ve	  to	  wind	  speed	  and	  direc8on	  in	  the	  20-‐40	  m/s	  
range.	  

§  QuikSCAT	  VV	  54	  degree	  incidence	  values	  have	  less	  sensi8vity.	  
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HH	  pol,	  46°	  Inc.	   VV	  pol,	  54°	  Inc.	  

(Blue,	  Green,	  Red)	  =	  (20,30,40)	  m/s	  +	  or	  -‐10%	  H*WIND	  	  	  



QuikSCAT	  MLE	  winds	  can	  be	  too	  high	  (>+2	  m/s)	  or	  too	  low	  (<-‐2	  m/s).	  
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•  MLE	  speed	  24-‐	  26	  m/s	  
•  Typical	  regime	  for	  MLE	  

winds	  in	  high	  wind	  and/
or	  high	  rain.	  

•  Cross	  Distance	  400-‐450	  km	  
•  PorVon	  of	  sweet	  zone	  

•  Plot	  shows	  histogram	  of	  
difference	  between	  neural	  
net	  (ANN)	  and	  MLE	  wind	  
speed	  

Total of 15,616 
individual wind 
vectors 
observed  in 
this regime for 
TCs from 
1999-2009. 



Here’s how the ANN can tell the difference 
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MLE 
Too 
Low 

MLE 
Too 
High 

•  High backscatter 
Co-polarization 
HH/VV ratio 
tends to indicate 
high MLE winds.  

C
ounts 

Simple linear classifier agrees with Neural Network 92% of the time. 
 

•  High sum of all 
backscatter  
tends to indicate 
low MLE winds.  

•  Using the two 
parameters one 
can mimic the 
ANN’s decision 
to raise or lower 
the MLE wind. 



ANN ANN 

QuikSCAT Validation with SFMR and Dropsondes 

10 



Intensity	  EsVmaVon	  from	  QuikSCAT	  data	  
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§  Technique:	  
-  Compute	  average	  of	  

wind	  vectors	  in	  
concentric	  circles	  
about	  center.	  

-  Take	  maximal	  
average	  	  value.	  

-  Mul8ply	  by	  1.4	  to	  
account	  for	  reduced	  
resolu8on	  

§  Omit:	  
§  Outer	  beam	  only	  region	  

at	  swath	  edge	  –no	  
correc8on	  

§  Storms	  more	  than	  40	  
deg	  from	  equator,	  
highest	  winds	  can	  be	  
far	  from	  center	  

§  Storms	  where	  less	  half	  
half	  of	  200-‐km	  radius	  
circle	  was	  observed	  



Intensity	  EsVmaVon	  from	  OceanSAT-‐2	  data	  
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§  Performance	  similar	  
to	  QuikSCAT	  but	  
biased	  low	  at	  at	  
highest	  speeds.	  

§  Low	  bias	  is	  likely	  due	  
to	  lack	  of	  highest	  
wind	  speeds	  in	  
OSCAT	  training	  set.	  

§  2010	  (OSCAT	  train	  
set)	  was	  a	  slower	  
Atlan8c	  hurricane	  
season	  than	  2005	  
(QuikSCAT	  train	  set).	  
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Description of High Wind Retrieval for 
RapidScat 
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Rain Correction Method 

§  RapidScat wind speeds before August 14, 2015 are corrected for rain 
using a combination of the [Stiles and Dunbar 2010] (speed1) and [Stiles 
et al 2014] tropical cyclone neural networks (speed2) 

•  Correction is only applied when rain is detected. (Rain Impact Quantity > 2.5) 
•  No correction in outer swath. (~80 km from swath edge) 
•  If speed2 is  < 10 m/s  speed1 is the corrected speed. 
•  If speed2 is  > 20 m/s speed2 is the corrected speed. 
•  If 10<= speed 2 <=20, the corrected speed is a weighted linear sum of speed1 and 

speed2. 

§  On August 14, 2015, RapidScat experienced a hardware anomaly that 
made brightness temperature estimation impossible, so the hurricane  
rain correction described in [Stiles et al 2014] could not be employed. 

§  The RapidScat wind speeds after August 14, 2015 were corrected for 
rain using a neural network that estimated speed as a function of the four 
flavors of normalized radar cross section (NRCS) and the DIRTH speed 
[Stiles and Dunbar 2010]. 

•  Neural Network was trained using global wind speed distribution, so high winds were 
not well represented in training set. Brightness temperatures were not utilized. 

•  Correction was only applied when rain was detected. (Rain Impact Quantity > 2.5) 
•  No correction in outer swath.  
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SFMR Comparison 

§  Method 
•  Obtained SFMR (Stepped Frequency Microwave 

Radiometer) data from NOAA/AOML Hurricane Research 
Division Website  

•  Averaged SFMR data over 10 minutes (~18-km distance on 
ground) 

•  Compared to RapidScat data within 6 hours. 
•  Unless otherwise stated chose all 12.5-km RapidScat wind 

vectors within 25 km of SFMR location. 
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Time-Ordered SFMR/RapidScat Comparison 
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RapidScat 
Observations of 
Hurricane Fay 
generally reflect 
trends in SFMR 
but appear 
misaligned, 
probably due to 6 
hour colocation 
window. 

SFMR  
RapidScat  
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Bias = 1.7, Std =7.0 m/s 



Intensity	  EsVmaVon	  from	  RapidScat	  data,	  255	  cases	  
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§  Technique:	  
-  Compute	  average	  of	  wind	  

vectors	  in	  concentric	  
circles	  about	  center	  from	  
50-‐200km	  radius.	  

-  Take	  maximal	  average	  	  
value.	  

-  Mul8ply	  by	  1.4	  to	  account	  
for	  reduced	  resolu8on	  

§  As	  with	  QuikSCAT	  we	  
omit	  

§  Outer	  beam	  only	  region	  at	  
swath	  edge	  –no	  
correc8on	  

§  Storms	  more	  than	  40	  deg	  
from	  equator,	  highest	  
winds	  can	  be	  far	  from	  
center	  

§  Storms	  where	  less	  half	  
half	  of	  200-‐km	  radius	  
circle	  was	  observed	  

•  Higher	  RapidScat	  
incidence	  angles	  may	  
have	  caused	  the	  
underes8ma8on	  of	  
winds	  at	  highest	  
speeds	  



RapidScat High Wind Examples 
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Soudelor from RapidScat 
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Uncorrected ANN Global Model 
Corrected 

ANN High Winds 
Model Corrected 



Chan-Hom and Nangka from RapidScat 
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Uncorrected ANN Global Model 
Corrected 

ANN High Winds Model Corrected 



Summary	  

•  QuikSCAT tropical cyclones wind speed fields have been  
–  Optimized for accuracy. 
–  Produced for all ten years of the QuikSCAT mission 1999-2009 including over 

5,000 scenes of tropical storm force winds and higher. 
–  Storm-centered wind fields can be found at tropicalcyclone.jpl.nasa.gov in the 

Tropical Cyclone Data Archive under the FTP server link. 
•  A similar dataset has been produced for OceanSAT-2 and can also be found at 

tropicalcyclone.jpl.nasa.gov 
•  The QuikSCAT high wind speed neural network has been applied to RapidScat data 

prior to August 14, 2015, 
•  RapidScat rain corrected wind speeds have been computed globally using a hybrid of the 

QuikSCAT tropical cyclone and global rain correction methods. 
•  RapidScat high winds in TCs appear to be biased low compared to the QuikSCAT TC wind 

product. 
•  The retrieved_wind_speed field in the full swath netcdf files contains the most accurate speed 

for high winds with or without rain. 
•  For RapidScat data acquired after August 14, 2015, brightness temperature 

information used to correct high wind speeds for rain was no longer available, so 
hurricane wind corrections are not performed. 

•  For this data, the retrieved_wind_speed_uncorrected field is the preferred speed for tropical 
cyclones. The retrieved_wind_speed field is made with a rain contamination correction 
algorithm that is suboptimal above 20 m/s. 21 
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