

RapidScat High Winds Observations

Bryan Stiles, Alex Wineteer (presenting), and Alex Fore Jet Propulsion Laboratory, California Institute of Technology

International Workshop on Measuring High Winds over the Ocean Exeter, England 15-17 November 2016

© 2016 Jet Propulsion Laboratory, California Institute of Technology

- Description of High Wind Retrieval for Previous Ku-Band Scatterometers
 - Currently the most accurate high wind speed data set is archived as stormcentered data products separately from the nominal QuikSCAT and OceanSAT-2 full swath data sets.
- Description of High Wind Retrieval for RapidScat
 - Two different versions due to hardware malfunction
- RapidScat High Wind Examples
- Conclusions
- References

Description of High Wind Retrieval for Previous Ku-Band Scatterometers

Background

- Goal: To optimize, produce, validate, and utilize ocean surface wind speed fields around all tropical cyclones (TCs) observed by QuikSCAT, OceanSAT-2, RapidScat, and ASCAT.
- Problem: Scatterometer winds in TCs are corrupted by rain and use empirical retrieval methods that were not optimized for high wind conditions.
 - Rain contamination [Yueh and Stiles, 2002] [Nie and Long, 2007].
 - Decreased sensitivity at high winds.[Fernandez et al, 2006],[Donelan et al, 2004]
 - Poorly trained GMFs for high winds due to large parameter space and lack of ground truth
- Solution: Train a neural network to determine accurate TC winds for scatterometer data in the presence of rain.
- Neural Networks are useful for approximating simple nonlinear mappings with more than three inputs for which ground truth is available.
 - Lower dimensionality or linear problems are better handled with other techniques.
 - Complex mappings (many different modes, etc) are difficult to train.
 - Situations without ground truth can be handled using unsupervised techniques, but such solutions are often impractical.
- One can optimize a problem for a neural network solution by breaking it up into simpler sub-problems.

Synopsis of Technique

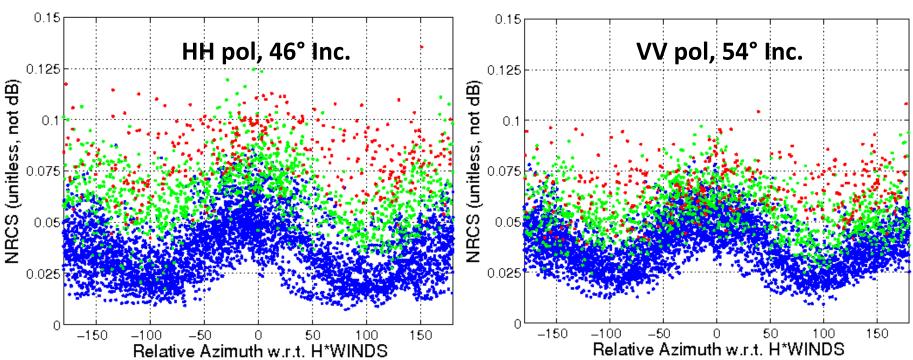
- Using a simple neural network (Stiles et al , 2014), we fit a nonlinear mapping
 - From 9 scatterometer measurements and one geometry indicator
 - To wind speed.
- Inputs are:
 - 8 sets of backscatter values
 - · 2 different azimuths,
 - 2 different polarizations,
 - 2 different spatial scales (12.5 and 87.5 km)
 - a rain rate from the scatterometer noise channel [Ahmad et al, 2005].
 - cross track distance as a proxy for viewing geometry
 - Information from latest of version (3) of QuikSCAT global wind retrieval product
 - Speed corrected for rain
 - Maximum likelihood speed (no correction for rain)
 - Rain Impact quantity
- Ground truth speeds are from H*WIND data from 2005 Atlantic hurricanes.
- Structure employs a set of sub-networks to simplify the mappings needed.
- Attempt to correct wind direction in rain is left for future work.
 - Nominal Maximum Likelihood direction retrievals are maintained.

How does it work?

- The neural network estimates an optimal mapping between its 10 inputs and its training ground truth (H*WIND).
 - The resultant multi-dimensional mapping is hard to visualize
- The next few slides exemplify the information available to the neural network
 - Showing Ku-band sigma-0 is sensitive to winds from 20-40 m/s
 - For a specific case of MLE speed = 24-26 m/s and CTD = 400-450 km,
 We examine the information content of three parameters of interest ,
 - Copol ratio = sum of HH NRCS / sum of VV NRCS
 - sum sigma-0 = sum of all four NRCS observations
 - QRAD rain rate = Estimate of Rain rate derived from QuikSCAT brightness temperature

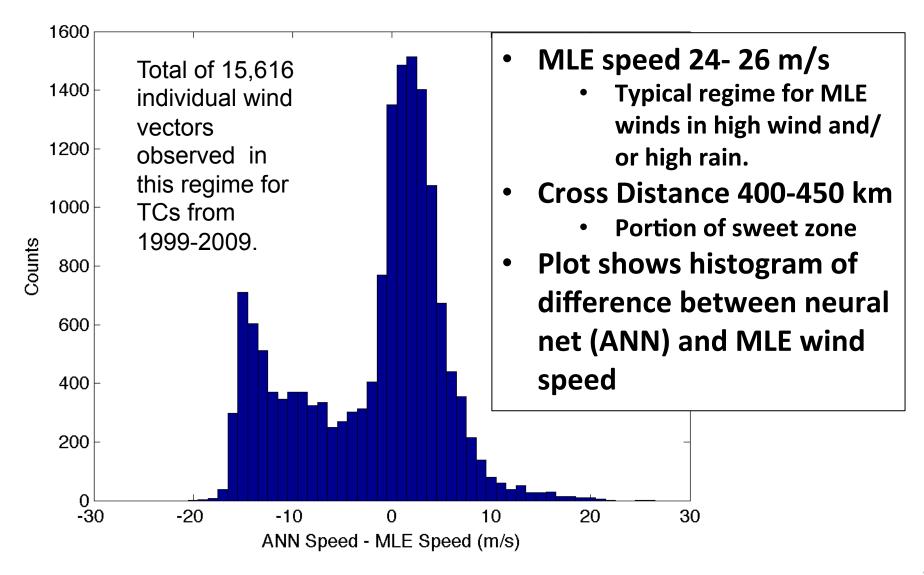
Ku-band NRCS is sensitive to wind speed in 20-40 m/s range.

- In rainfree conditions (rain impact quantity <= 2.5), QuikSCAT HH pol 46 degree incidence NRCS values are sensitive to wind speed and direction in the 20-40 m/s range.
- QuikSCAT VV 54 degree incidence values have less sensitivity.



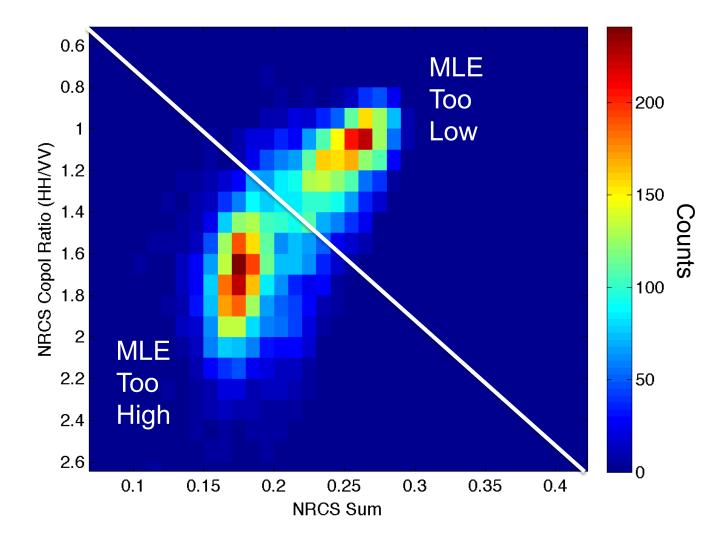
(Blue, Green, Red) = (20,30,40) m/s + or -10% H*WIND

QuikSCAT MLE winds can be too high (>+2 m/s) or too low (<-2 m/s).



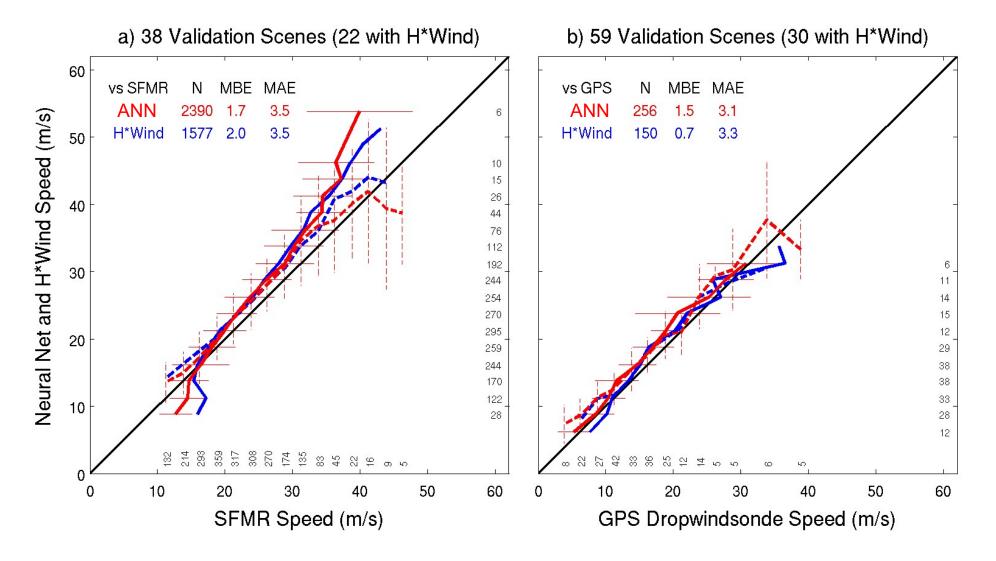
Here's how the ANN can tell the difference

Simple linear classifier agrees with Neural Network 92% of the time.

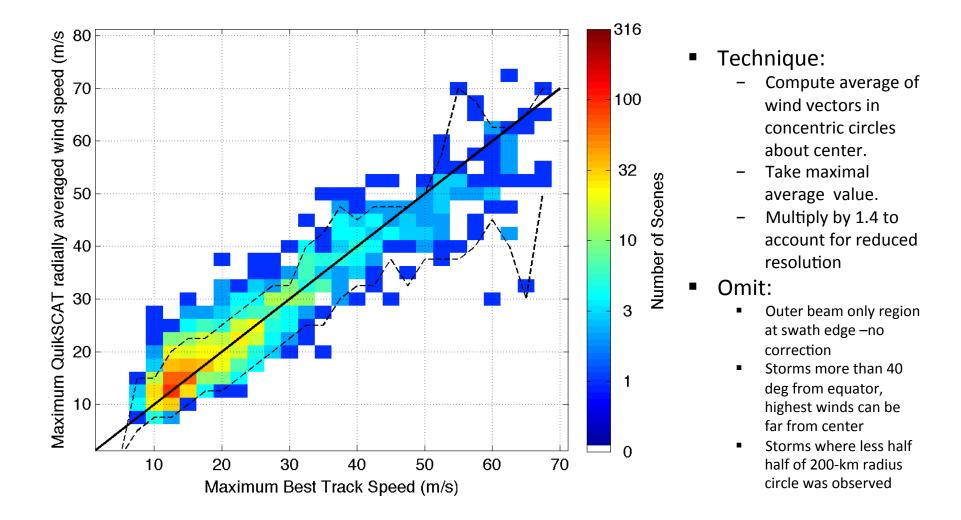


- High backscatter Co-polarization HH/VV ratio tends to indicate high MLE winds.
- High sum of all backscatter tends to indicate low MLE winds.
- Using the two parameters one can mimic the ANN's decision to raise or lower the MLE wind.

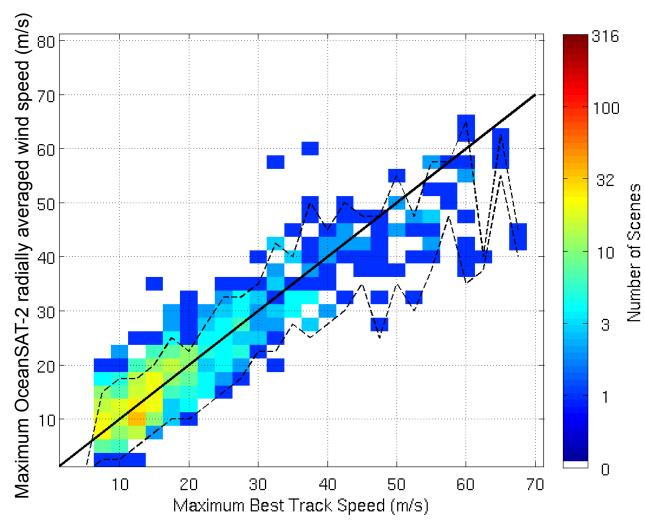
QuikSCAT Validation with SFMR and Dropsondes



Intensity Estimation from QuikSCAT data



Intensity Estimation from OceanSAT-2 data



- Performance similar to QuikSCAT but biased low at at highest speeds.
- Low bias is likely due to lack of highest wind speeds in OSCAT training set.
- 2010 (OSCAT train set) was a slower Atlantic hurricane season than 2005 (QuikSCAT train set).

Description of High Wind Retrieval for RapidScat

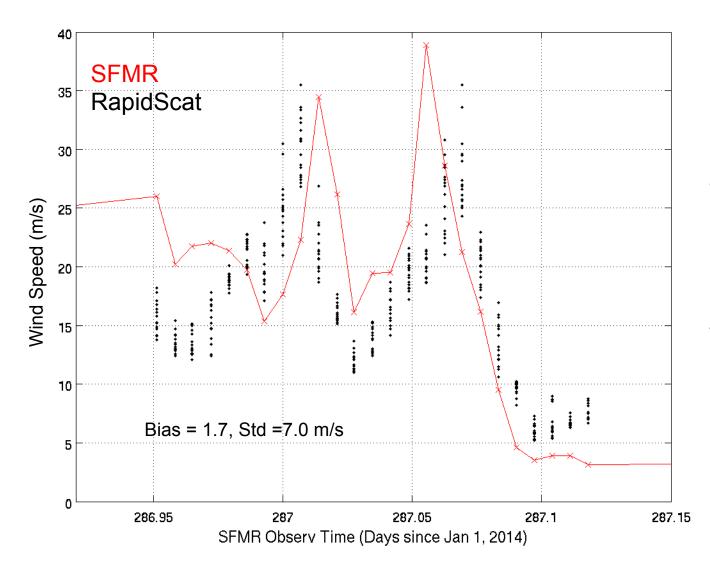
Rain Correction Method

- RapidScat wind speeds before August 14, 2015 are corrected for rain using a combination of the [Stiles and Dunbar 2010] (speed1) and [Stiles et al 2014] tropical cyclone neural networks (speed2)
 - Correction is only applied when rain is detected. (Rain Impact Quantity > 2.5)
 - No correction in outer swath. (~80 km from swath edge)
 - If speed2 is < 10 m/s speed1 is the corrected speed.
 - If speed2 is > 20 m/s speed2 is the corrected speed.
 - If 10<= speed 2 <= 20, the corrected speed is a weighted linear sum of speed1 and speed2.
- On August 14, 2015, RapidScat experienced a hardware anomaly that made brightness temperature estimation impossible, so the hurricane rain correction described in [Stiles et al 2014] could not be employed.
- The RapidScat wind speeds after August 14, 2015 were corrected for rain using a neural network that estimated speed as a function of the four flavors of normalized radar cross section (NRCS) and the DIRTH speed [Stiles and Dunbar 2010].
 - Neural Network was trained using global wind speed distribution, so high winds were not well represented in training set. Brightness temperatures were not utilized.
 - Correction was only applied when rain was detected. (Rain Impact Quantity > 2.5)
 - No correction in outer swath.

SFMR Comparison

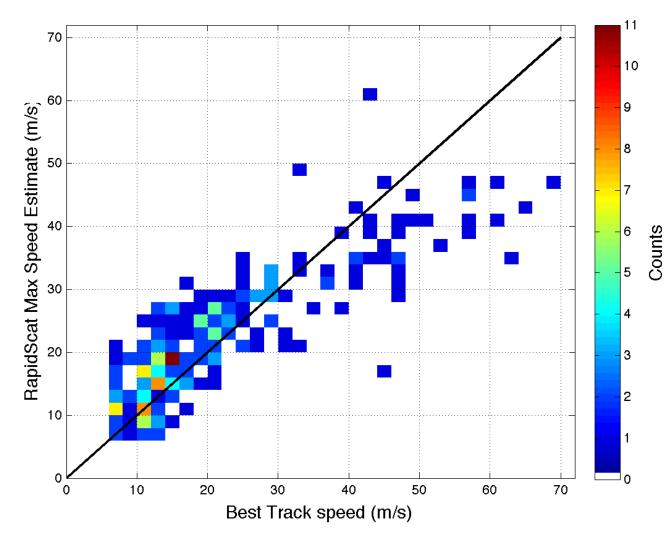
Method

- Obtained SFMR (Stepped Frequency Microwave Radiometer) data from NOAA/AOML Hurricane Research Division Website
- Averaged SFMR data over 10 minutes (~18-km distance on ground)
- Compared to RapidScat data within 6 hours.
- Unless otherwise stated chose all 12.5-km RapidScat wind vectors within 25 km of SFMR location.



RapidScat Observations of Hurricane Fay generally reflect trends in SFMR but appear misaligned, probably due to 6 hour colocation window.

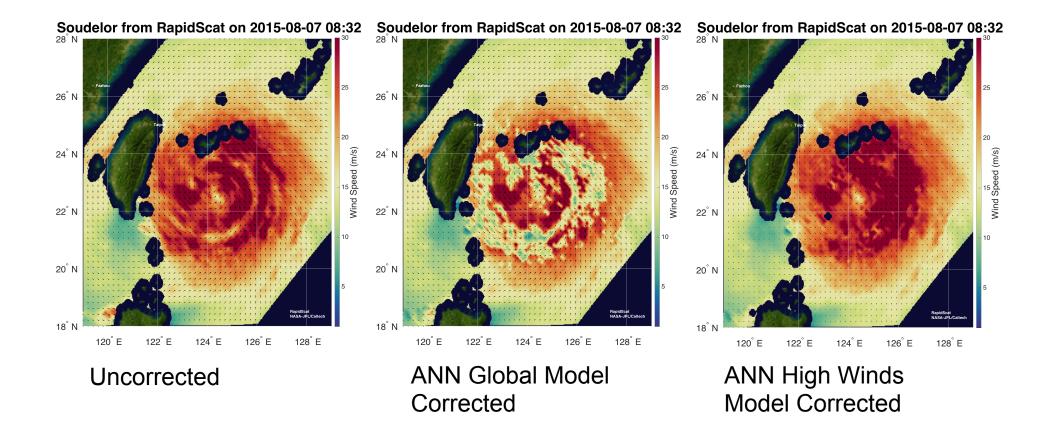
Intensity Estimation from RapidScat data, 255 cases



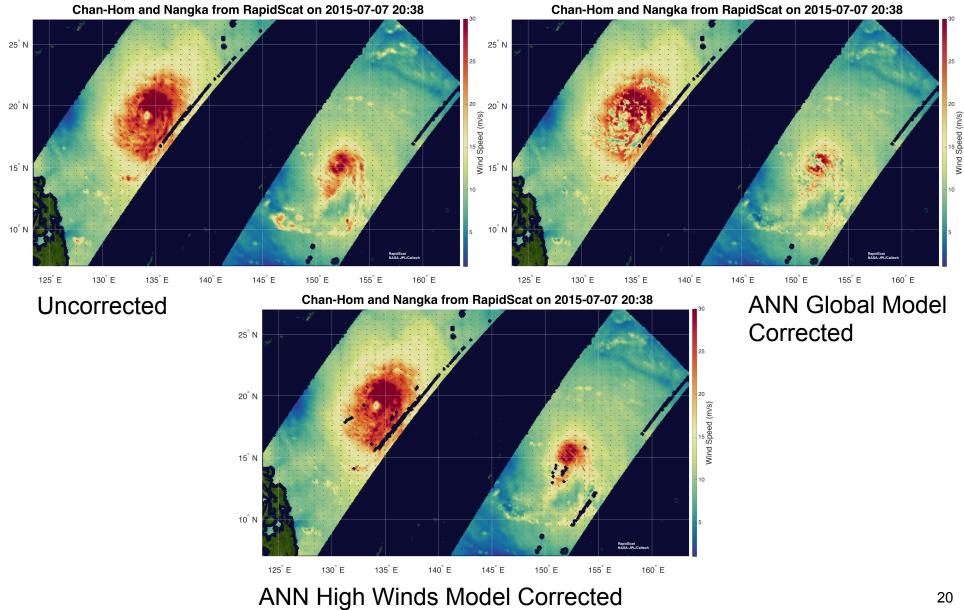
- Technique:
 - Compute average of wind vectors in concentric circles about center from 50-200km radius.
 - Take maximal average value.
 - Multiply by 1.4 to account for reduced resolution
- As with QuikSCAT we omit
 - Outer beam only region at swath edge -- no correction
 - Storms more than 40 deg from equator, highest winds can be far from center
 - Storms where less half half of 200-km radius circle was observed
- Higher RapidScat incidence angles may have caused the underestimation of winds at highest speeds

RapidScat High Wind Examples

Soudelor from RapidScat



Chan-Hom and Nangka from RapidScat



Summary

- QuikSCAT tropical cyclones wind speed fields have been •
 - Optimized for accuracy.
 - Produced for all ten years of the QuikSCAT mission 1999-2009 including over 5,000 scenes of tropical storm force winds and higher.
 - Storm-centered wind fields can be found at tropicalcyclone.jpl.nasa.gov in the Tropical Cyclone Data Archive under the FTP server link.
- A similar dataset has been produced for OceanSAT-2 and can also be found at tropicalcyclone.jpl.nasa.gov
- The QuikSCAT high wind speed neural network has been applied to RapidScat data • prior to August 14, 2015,
 - RapidScat rain corrected wind speeds have been computed globally using a hybrid of the QuikSCAT tropical cyclone and global rain correction methods.
 - RapidScat high winds in TCs appear to be biased low compared to the QuikSCAT TC wind product.
 - The retrieved wind speed field in the full swath netcdf files contains the most accurate speed for high winds with or without rain.
- For RapidScat data acquired after August 14, 2015, brightness temperature • information used to correct high wind speeds for rain was no longer available, so hurricane wind corrections are not performed.
 - For this data, the retrieved wind speed uncorrected field is the preferred speed for tropical cyclones. The retrieved wind speed field is made with a rain contamination correction algorithm that is suboptimal above 20 m/s.

References

- B.W. Stiles; Danielson, R.E.; Poulsen, W.L.; Brennan, M.J.; Hristova-Veleva, S.; Tsae-Pyng Shen; Fore, A.G., "Optimized Tropical Cyclone Winds From QuikSCAT: A Neural Network Approach," Geoscience and Remote Sensing, IEEE Transactions on , vol.52, no.11, pp.7418,7434, Nov. 2014 doi: 10.1109/ TGRS.2014.2312333 (Tropical Cyclone Speed Correction)
- B. W. Stiles, and Dunbar, R S., "A Neural Network Technique for Improving the Accuracy of Scatterometer Winds in Rainy Conditions," IEEE Transactions on Geoscience and Remote Sensing, 2010, Vol 48, No. 8, pp 3114-3122. (Global Speed Correction –suboptimal for winds over 20 m/s)
- Fore, A.G.; Stiles, B.W.; Chau, A.H.; Williams, B.A.; Dunbar, R.S.; Rodriguez, E., "Point-Wise Wind Retrieval and Ambiguity Removal Improvements for the QuikSCAT Climatological Data Set," Geoscience and Remote Sensing, IEEE Transactions on , vol.52, no.1, pp.51,59, Jan. 2014 doi: 10.1109/TGRS. 2012.2235843 (QuikSCAT Version 3 paper, uses the global speed correction)

Acknowledgement

 The work reported here was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.