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Outline 

§  Description of High Wind Retrieval for Previous Ku-Band 
Scatterometers 

•  Currently the most accurate high wind speed data set is archived as storm-
centered data products separately from the nominal QuikSCAT and OceanSAT-2 
full swath data sets. 

§  Description of High Wind Retrieval for RapidScat 
•  Two different versions due to hardware malfunction 

§  RapidScat High Wind Examples 
§  Conclusions  
§  References 
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Description of High Wind Retrieval for 
Previous Ku-Band Scatterometers 
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Background	
  

§  Goal: To optimize, produce, validate, and utilize ocean surface wind speed fields 
around all tropical cyclones (TCs) observed by QuikSCAT, OceanSAT-2, 
RapidScat, and ASCAT. 

§  Problem: Scatterometer winds in TCs are corrupted by rain and use empirical 
retrieval methods that were not optimized for high wind conditions. 

•  Rain contamination [Yueh and Stiles,2002] [Nie and Long, 2007]. 
•  Decreased sensitivity at high winds.[Fernandez et al, 2006],[Donelan et al, 

2004] 
•  Poorly trained GMFs for high winds due to large parameter space and  lack of 

ground truth 
§  Solution: Train a neural network	
  to	
  determine	
  accurate	
  TC	
  winds	
  for	
  sca3erometer	
  data	
  

in	
  the	
  presence	
  of	
  rain.	
  
§  Neural Networks are useful for approximating simple nonlinear mappings with more 

than three inputs for which ground truth is available. 
•  Lower dimensionality or linear problems are better handled with other 

techniques. 
•  Complex mappings (many different modes, etc) are difficult to train. 
•  Situations without ground truth can be handled using unsupervised techniques, 

but such solutions are often impractical. 
§  One can optimize a problem for a neural network solution by breaking it up into 

simpler sub-problems. 
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Synopsis	
  of	
  Technique	
  

§  Using a simple neural network (Stiles et al , 2014), we fit a nonlinear mapping  
•  From 9 scatterometer measurements and one geometry indicator  
•  To wind speed.  

§  Inputs are: 
•    8 sets of backscatter values 

•  2 different azimuths,  
•  2 different polarizations,  
•  2 different spatial scales (12.5 and 87.5 km) 

•  a rain rate from the scatterometer noise channel [Ahmad et al, 2005]. 
•  cross track distance as a proxy for viewing geometry 
•  Information from latest of version (3) of QuikSCAT global wind retrieval product 

•  Speed corrected for rain  
•  Maximum likelihood speed (no correction for rain) 
•  Rain Impact quantity  

§  Ground truth speeds are from H*WIND data from 2005 Atlantic hurricanes. 
§  Structure employs a set of sub-networks to simplify the mappings needed. 
§  Attempt to correct wind direction in rain is left for future work. 

§  Nominal Maximum Likelihood direction retrievals are maintained. 
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How	
  does	
  it	
  work?	
  

§  The neural network estimates an optimal mapping between its 10 
inputs and its training ground truth (H*WIND). 

•  The resultant multi-dimensional mapping is hard to visualize 
§  The next few slides exemplify the information available to the neural 

network 
•  Showing Ku-band sigma-0 is sensitive to winds from 20-40 m/s 
•  For a specific case of MLE speed = 24-26 m/s and CTD = 400-450 km, 

We examine the information content of three parameters of interest ,  
•  Copol ratio = sum of HH NRCS / sum of VV NRCS 
•  sum sigma-0 = sum of all four NRCS observations 
•  QRAD rain rate = Estimate of Rain rate derived from QuikSCAT brightness 

temperature 
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Ku-band NRCS is sensitive to wind speed in 20-40 m/s range. 

§  In	
  rainfree	
  condi8ons	
  (rain	
  impact	
  quan8ty	
  <=	
  2.5),	
  QuikSCAT	
  HH	
  pol	
  46	
  degree	
  
incidence	
  NRCS	
  values	
  are	
  sensi8ve	
  to	
  wind	
  speed	
  and	
  direc8on	
  in	
  the	
  20-­‐40	
  m/s	
  
range.	
  

§  QuikSCAT	
  VV	
  54	
  degree	
  incidence	
  values	
  have	
  less	
  sensi8vity.	
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HH	
  pol,	
  46°	
  Inc.	
   VV	
  pol,	
  54°	
  Inc.	
  

(Blue,	
  Green,	
  Red)	
  =	
  (20,30,40)	
  m/s	
  +	
  or	
  -­‐10%	
  H*WIND	
  	
  	
  



QuikSCAT	
  MLE	
  winds	
  can	
  be	
  too	
  high	
  (>+2	
  m/s)	
  or	
  too	
  low	
  (<-­‐2	
  m/s).	
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•  MLE	
  speed	
  24-­‐	
  26	
  m/s	
  
•  Typical	
  regime	
  for	
  MLE	
  

winds	
  in	
  high	
  wind	
  and/
or	
  high	
  rain.	
  

•  Cross	
  Distance	
  400-­‐450	
  km	
  
•  PorVon	
  of	
  sweet	
  zone	
  

•  Plot	
  shows	
  histogram	
  of	
  
difference	
  between	
  neural	
  
net	
  (ANN)	
  and	
  MLE	
  wind	
  
speed	
  

Total of 15,616 
individual wind 
vectors 
observed  in 
this regime for 
TCs from 
1999-2009. 



Here’s how the ANN can tell the difference 
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MLE 
Too 
Low 

MLE 
Too 
High 

•  High backscatter 
Co-polarization 
HH/VV ratio 
tends to indicate 
high MLE winds.  

C
ounts 

Simple linear classifier agrees with Neural Network 92% of the time. 
 

•  High sum of all 
backscatter  
tends to indicate 
low MLE winds.  

•  Using the two 
parameters one 
can mimic the 
ANN’s decision 
to raise or lower 
the MLE wind. 



ANN ANN 

QuikSCAT Validation with SFMR and Dropsondes 
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Intensity	
  EsVmaVon	
  from	
  QuikSCAT	
  data	
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§  Technique:	
  
-  Compute	
  average	
  of	
  

wind	
  vectors	
  in	
  
concentric	
  circles	
  
about	
  center.	
  

-  Take	
  maximal	
  
average	
  	
  value.	
  

-  Mul8ply	
  by	
  1.4	
  to	
  
account	
  for	
  reduced	
  
resolu8on	
  

§  Omit:	
  
§  Outer	
  beam	
  only	
  region	
  

at	
  swath	
  edge	
  –no	
  
correc8on	
  

§  Storms	
  more	
  than	
  40	
  
deg	
  from	
  equator,	
  
highest	
  winds	
  can	
  be	
  
far	
  from	
  center	
  

§  Storms	
  where	
  less	
  half	
  
half	
  of	
  200-­‐km	
  radius	
  
circle	
  was	
  observed	
  



Intensity	
  EsVmaVon	
  from	
  OceanSAT-­‐2	
  data	
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§  Performance	
  similar	
  
to	
  QuikSCAT	
  but	
  
biased	
  low	
  at	
  at	
  
highest	
  speeds.	
  

§  Low	
  bias	
  is	
  likely	
  due	
  
to	
  lack	
  of	
  highest	
  
wind	
  speeds	
  in	
  
OSCAT	
  training	
  set.	
  

§  2010	
  (OSCAT	
  train	
  
set)	
  was	
  a	
  slower	
  
Atlan8c	
  hurricane	
  
season	
  than	
  2005	
  
(QuikSCAT	
  train	
  set).	
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Description of High Wind Retrieval for 
RapidScat 
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Rain Correction Method 

§  RapidScat wind speeds before August 14, 2015 are corrected for rain 
using a combination of the [Stiles and Dunbar 2010] (speed1) and [Stiles 
et al 2014] tropical cyclone neural networks (speed2) 

•  Correction is only applied when rain is detected. (Rain Impact Quantity > 2.5) 
•  No correction in outer swath. (~80 km from swath edge) 
•  If speed2 is  < 10 m/s  speed1 is the corrected speed. 
•  If speed2 is  > 20 m/s speed2 is the corrected speed. 
•  If 10<= speed 2 <=20, the corrected speed is a weighted linear sum of speed1 and 

speed2. 

§  On August 14, 2015, RapidScat experienced a hardware anomaly that 
made brightness temperature estimation impossible, so the hurricane  
rain correction described in [Stiles et al 2014] could not be employed. 

§  The RapidScat wind speeds after August 14, 2015 were corrected for 
rain using a neural network that estimated speed as a function of the four 
flavors of normalized radar cross section (NRCS) and the DIRTH speed 
[Stiles and Dunbar 2010]. 

•  Neural Network was trained using global wind speed distribution, so high winds were 
not well represented in training set. Brightness temperatures were not utilized. 

•  Correction was only applied when rain was detected. (Rain Impact Quantity > 2.5) 
•  No correction in outer swath.  
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SFMR Comparison 

§  Method 
•  Obtained SFMR (Stepped Frequency Microwave 

Radiometer) data from NOAA/AOML Hurricane Research 
Division Website  

•  Averaged SFMR data over 10 minutes (~18-km distance on 
ground) 

•  Compared to RapidScat data within 6 hours. 
•  Unless otherwise stated chose all 12.5-km RapidScat wind 

vectors within 25 km of SFMR location. 
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Time-Ordered SFMR/RapidScat Comparison 
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RapidScat 
Observations of 
Hurricane Fay 
generally reflect 
trends in SFMR 
but appear 
misaligned, 
probably due to 6 
hour colocation 
window. 

SFMR  
RapidScat  
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Bias = 1.7, Std =7.0 m/s 



Intensity	
  EsVmaVon	
  from	
  RapidScat	
  data,	
  255	
  cases	
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§  Technique:	
  
-  Compute	
  average	
  of	
  wind	
  

vectors	
  in	
  concentric	
  
circles	
  about	
  center	
  from	
  
50-­‐200km	
  radius.	
  

-  Take	
  maximal	
  average	
  	
  
value.	
  

-  Mul8ply	
  by	
  1.4	
  to	
  account	
  
for	
  reduced	
  resolu8on	
  

§  As	
  with	
  QuikSCAT	
  we	
  
omit	
  

§  Outer	
  beam	
  only	
  region	
  at	
  
swath	
  edge	
  –no	
  
correc8on	
  

§  Storms	
  more	
  than	
  40	
  deg	
  
from	
  equator,	
  highest	
  
winds	
  can	
  be	
  far	
  from	
  
center	
  

§  Storms	
  where	
  less	
  half	
  
half	
  of	
  200-­‐km	
  radius	
  
circle	
  was	
  observed	
  

•  Higher	
  RapidScat	
  
incidence	
  angles	
  may	
  
have	
  caused	
  the	
  
underes8ma8on	
  of	
  
winds	
  at	
  highest	
  
speeds	
  



RapidScat High Wind Examples 
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Soudelor from RapidScat 
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Uncorrected ANN Global Model 
Corrected 

ANN High Winds 
Model Corrected 



Chan-Hom and Nangka from RapidScat 
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Uncorrected ANN Global Model 
Corrected 

ANN High Winds Model Corrected 



Summary	
  

•  QuikSCAT tropical cyclones wind speed fields have been  
–  Optimized for accuracy. 
–  Produced for all ten years of the QuikSCAT mission 1999-2009 including over 

5,000 scenes of tropical storm force winds and higher. 
–  Storm-centered wind fields can be found at tropicalcyclone.jpl.nasa.gov in the 

Tropical Cyclone Data Archive under the FTP server link. 
•  A similar dataset has been produced for OceanSAT-2 and can also be found at 

tropicalcyclone.jpl.nasa.gov 
•  The QuikSCAT high wind speed neural network has been applied to RapidScat data 

prior to August 14, 2015, 
•  RapidScat rain corrected wind speeds have been computed globally using a hybrid of the 

QuikSCAT tropical cyclone and global rain correction methods. 
•  RapidScat high winds in TCs appear to be biased low compared to the QuikSCAT TC wind 

product. 
•  The retrieved_wind_speed field in the full swath netcdf files contains the most accurate speed 

for high winds with or without rain. 
•  For RapidScat data acquired after August 14, 2015, brightness temperature 

information used to correct high wind speeds for rain was no longer available, so 
hurricane wind corrections are not performed. 

•  For this data, the retrieved_wind_speed_uncorrected field is the preferred speed for tropical 
cyclones. The retrieved_wind_speed field is made with a rain contamination correction 
algorithm that is suboptimal above 20 m/s. 21 
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