#### Ocean wind retrieval using GNSS Reflectometry data from the UK TechDemoSat-1 mission

Giuseppe Foti<sup>1</sup>, <u>Christine Gommenginger<sup>1</sup></u> Martin Unwin<sup>2</sup>, Philip Jales<sup>2</sup> & Josep Rosello<sup>3</sup>

<sup>1</sup>National Oceanography Centre (UK), <sup>2</sup>Surrey Satellite Technology Ltd (UK) <sup>3</sup>ESTEC/European Space Agency



National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL



## **GNSS-Reflectometry**

- Signals of opportunity from Global Navigation Satellite Systems e.g GPS, Galileo...
- Global, ubiquitous signals
- Small low-cost receivers
  - Can be accommodated on constellation of small satellites or piggy-backing on satellites of opportunity
    - Potential for huge improvement in space-time sampling
  - L-band (weakly affected by precipitation)



Measurements of sea surface height and <u>ocean surface roughness (wind)</u>



National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

### Spaceborne GNSS-R for scatterometry

#### 2003 Proof-of-concept on SSTL's UK-DMC



Map of GNSS-Reflections (blue) and collocated NDBC Buoys (red)



Collected ~ 50 data points over ocean 8 July 2014 UK TechDemoSat-1 launch with SGR-ReSI GPS-R payload





noc.ac.uk

Dec 2016 NASA Cyclone Global Navigation Satellite System (CYGNSS) mission

Constellation of 8 SGR-ReSI





Aims for mean revisit time ~ 4 hours

## TechDemoSat-1 (TDS-1)

- Built & launched by Surrey Satellite Technology Ltd (SSTL)
  - Launched 8 July 2014
- UK-funded technology demonstrator mission
  - Duty cycle shared between 7 payloads
  - GNSS-R payload operates only for 2 in every 8 days
- Quasi sun-synchronous orbit with a local time ascending node (LTAN) drift of 1.42 h/yr
- Tracks up to four reflections simultaneously
- Ground processing, data dissemination and Level 2 inversion & validation funded by ESA
  - http://www.merrbys.co.uk/
  - L1 Delay Doppler Maps & L2 wind speed @ 1Hz



National Oceanography Centre Natural environment research council

Talk by Martin Unwin, Thursday, 12:20

#### TechDemoSat-1 in SSTL labs



NER



#### TDS-1 GNSS-R data volumes (2 in 8 days)



## TDS-1 Level 2 wind speed inversion

- So far, TDS-1 inversions based on un-calibrated SNR
  - to exploit full dataset (unknown system gain in AGM)
- Peak signal in delay Doppler maps around the Specular Point (SP)
  - Automated robust peak location detection



- Fast-Delivery Inversion (FDI): purely empirical
- Bistatic Radar Equation (BRE): corrects for antenna gain, path losses, geometry

noc.ac.uk

 All algorithms developments based on collocation of TDS-1 with ASCAT-A/B







## **Collocation with ASCAT**

Ocean=43.1% of which ASCAT collocated=67.4%



20 15 ASCAT U10 (m/s)

10

25

# **BRE: Bistatic Radar Equation**

$$\left\langle \left| \mathbf{Y}(\hat{t}, \hat{f}) \right|^{2} \right\rangle = \frac{T_{i}^{2} P_{T} G_{T} / {}^{2}}{\left(4\rho\right)^{3}} \bigotimes_{A} \frac{G_{R} L^{2} (\hat{t} - t) S^{2} (\hat{f} - f)}{R_{R}^{2} R_{T}^{2}} S^{0} dA^{2} \frac{S^{2} (\hat{f} - f)}{S^{2} (\hat{f} - f)} S^{0} dA^{2} \frac{S^{2} (\hat{f} - f)}{S^{2} R_{T}^{2}} S^{0} \frac{S^{2} R_{T}^{2}}{S^{2} R_{T}^{2}} S^{0} \frac{S^{$$

- Zavorotny & Voronovich (2000)
- Bistatic Normalized Radar Cross Section (σ°)
  - Corrects for antenna gain, path losses and geometry
- First-order effect is antenna gain at SP
  - Restricting analyses to reflections in main antenna lobe minimises impact of satellite
     mispeinting uncertainty



National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCI



## BRE performance for wind speed



Foti et al, GRL, 2015



National Oceanography Centre

noc.ac.uk

#### NERC SCIENCE OF THE ENVIRONMENT

# Fast-Delivery Inversion (FDI)



- Level 2 winds available on <u>http://www.merrbys.co.uk/</u>
- AGM + PGM36; 4.6M L2 samples; FDI U10 capped at 40m/s

Unwin et al, JSTARS, 2016



Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

## Global GNSS-R winds NOC FDI v1.11 May15 – Feb16; 1deg



- Spatial distribution similar to ASCAT winds
- Some biases in equatorial regions (L-band noise hotspots)
  - Need for calibrated GNSS-R signals





## Spaceborne GNSS-R in high winds?

A few examples

Collocated TDS-1/ASCAT with Storm Best Tracks



National Oceanography Centre Natural environment research council



## DOLPHIN



## **GLENDA**





National Oceanography Centre

noc.ac.uk

#### NERC SCIENCE OF THE ENVIRONMENT

## JOALANE



## MAYSAK



## Summary & Outlook

- TDS-1 continues to acquire large volumes of spaceborne GNSS-R data since Sept 2014
  - Ground processing & data dissemination in place up to L2 wind speed
- Development of TDS-1 wind speed inversion is ongoing
  - Many approaches to GNSS-R inversion and calibration/validation
  - Many complex effects linked to TDS-1 mission (system gain, antenna gain, attitude uncertainty) and new discovery of environmental factors (sea state, RFI, elevated L-band noise at Equator,...)
  - Many lessons learned!





# Summary & Outlook

- First look at spaceborne GNSS-R in high wind conditions
  - Examples of successful TDS-1 acquisitions in high winds
    Very promising for CYGNSS (+ better mission parameters)
  - Illustrates how GNSS-R sampling can complement ASCAT dual-swath
  - Evidence that GNSS-R signals are sensitive to wind field structure...
  - ...but FDI wind speed too low
  - ...but FDI inversion never designed for high winds
  - Many interesting aspects to explore e.g. impact of rain, sensitivity to wind direction, impact of small scale variability/surface heterogeneity,...





### Thank You



National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

