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®. MELBOURNE | Waves as Atmosphere/Ocean Link

Small- and large-scale air-sea processes are l Free atmosphere
essentially coupled in nature, No| - f | critlment
but not in the models VarsCal velociies
. I Outer BL
> Atmospheric boundary layer
— winds generate waves ] E—
— waves provide surface roughness and [ Monin Obukhov BL
change the winds (] S
— waves evolve, fluxes change Y W S
> Upper ocean mixed layer A 0O,
— generate currents A R S T =
y N -’ \\
— produce turbulence G ——
e 0 /JM\/\A"L Whace sydl® A~y
— turbulence: moderate and facilitate L \;\«,\N‘"‘: -
mixing - e S
— changes the circulation, SST _ '
Tradition and future " el
> Small scales _and_ Iarge_ scales are separated. Models N | e
reach saturation in their performance vertical velociies
vill Thermockne

Understanding exists, computer capacity exists Chalikov & Belevich, 1993, BLM
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MELBOURNE Momentum flux

Momentum flux to currents and waves (through slope-coherent

pressure and breaking)
1

Kudryavtsev & Makin,
2011, BLM
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B : MELBOURNE | Everything changes at extreme conditions

« at wind speeds U>32my/s, dynamics of the atmospheric
boundary layer, of the ocean wave surface and of the
upper ocean layer — all change

* sea drag saturates at U,,=32-33m/s above the surface
(Powell et al., 2003)

 at the surface, wave assymmetry saturates at
U,,~34m/s. This indicates change of the wave
breaking mechanism to the direct wind forcing (Leikin
et al., 1995)

« wave breaking probability would no longer be
controlled by nonlinear processes

« cross-interface gas fluxes still grow, but at a slow rate
if U,, > 36m/s, additional mechanisms become active

below the surface (McNeil & d’Asaro, 2007)
Babanin, 2011, Proc. Coasts and Ports
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Atmospheric side

* Wave Boundary Layer (WBL)
* wind measurements are often done by buoys
* In strong storms, buoys masts are within WBL

 how accurate are extrapolations of such buoy
wind measurements?
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»). MELBOURNE |Waves, sea drag, air-sea interactions

* In air-sea interaction and ocean-mixing models, the
wind stress is usually parameterised to directly drive
the dynamics of the upper ocean 8y B

« ~90% of the flux, however, first input into the waves

 air-sea coupling is usually expressed in terms of the
drag coefficient C, (but scatter is big)

T=pau'w'=pau3=paCdU120 ABL

e the concept relies on existence of the constant flux layer
e coupling with wave models is necessary

uw +uw+ pn_ =7t WBL

e terms due to wave-produced velocity and pressure are absent over
flat surface
e they decay rapidly away from the surface, but the sum is constant
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Lake George experiment

direct measurements of input and dissipation
direct measurements of sea drag
Young, Banner, Donelan, Babanin, McCormic, 2005, JTec




THE UNIVERSITY OF L
S

B MEIBEURNEN

10'E T T x | T '3 T T x 1 T N
1 / 4 7’ -4
J / / 4
= X X % K
" i ¥ 4 4
.C " * I)( ,/
2 ¥ ] XX
z 10° - X ){F /x /)( “3
F X X < 3
C ! 1 ! 1 1 1 l 1 1 l
] 2 4 6 8 10 12 14 16 18 20
U, M/s
25 T T T T T T T T T
201~ -

2 14,1 2
T=pu =puw=pCuU,

U(Z)=u* In-=
Kz,

—

£
5
8 06 2.,
’ +
€
’é 0.4 .
- ' ’
g 02 (
H +
-]
o A e
0 02 04 08 08 1

u,, m/s, profile measurements

* inter-comparisons were done with Sonic anemometer

e light winds U,, < 4m/s were excluded from analysis
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Lake George, * following, o fixed records
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B, MELBOURNE Conclusions (for WBL)

 \Wave Boundary Layer is investigated by means
of field observations and numerical modelling

 turbulent stress towards the surface is reduced
~/ times

 mean wind speed near the surface is some 5%
greater than predictions based on the constant-
flux layer profile

* results may have significant implications for
extrapolations of buoy measurements in extreme
conditions
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Water side

* Wave-induced mixing

* missing in existing models

* mixes through the thermocline

 can cool the surface and affect intensity of

tropical-cyclones
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Field observations, North
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The waves
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R MELLOYONSWAP SPECTRUM
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» two-phase behaviour of spectral dissipation:

- linear dependence of S, on the spectrum at the I)Odéal(c'.'
- cumulative effect at smaller scales
» b depends on the wind for U,, > 14 m/s
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Extreme Events in terms of wind (ul0 > 20m/s)

» Self-similarity theory:

5 36 o= o g0 g - relative growth slower
€ = (2.5617250) - 1072 f = x

1.23 P - overall energy is larger
107¢ , — 3
¢ 1 Figure:
- 1 - solid line: typical conditions
% 10'35— - dash-dotted purple line
S 1 (asterisks): Southern Ocean
e 1 (u10>20m/s)
-.g, 10™L J - dash green line (large circles):
@ . 1 tropical cyclones (Western
- 1 Australia)
10° -1 0
10 10

fp, dimensionless
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méractions at extreme wind forcing

« at wind speeds U>32my/s, dynamics of the atmospheric
boundary layer, of the ocean wave surface and of the upper
ocean layer — all change

* sea drag saturates at U,,=32-33m/s above the surface

 cross-interface gas fluxes still grow, but at a slow rate if U,
> 35m/s, additional mechanisms become active below the
surface

 at the surface, wave asymmetry saturates at U,,~34m/s.
This indicates change of the wave breaking mechanism to
the direct wind forcing

« wave-induced mixing can substantially cool the surface
« wave spectra exhibit range of specific behaviours
« surface/wind relationships are substantially altered
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$&. mecsourne 'Spectral hurricane modelling

» Extreme conditions are usually modelled
by extrapolation from moderate conditions

* Physics of air-sea interactions in extreme
conditions is different

* directional spectra are unknown

» wind fields are a problem

* negative input is a problem

» wind-induced currents are a problem
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méractions at extreme wind forcing

« at wind speeds U>32my/s, dynamics of the atmospheric
boundary layer, of the ocean wave surface and of the upper
ocean layer — all change

* sea drag saturates at U,,=32-33m/s above the surface

 cross-interface gas fluxes still grow, but at a slow rate if U,
> 35m/s, additional mechanisms become active below the
surface

 at the surface, wave asymmetry saturates at U,,~34m/s.
This indicates change of the wave breaking mechanism to
the direct wind forcing

« wave-induced mixing can substantially cool the surface
« wave spectra exhibit range of specific behaviours
« surface/wind relationships are substantially altered
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Drag coefficient

* In every air-sea interaction model

* intends to replace the physics of the
boundary layer with a single coefficient,
dependent on the wind
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[10] We believe that a complete list of physical properties
and phenomena, whose effect on the sea drag should be
investigated and incorporated 1n the final parameterization to
reduce the scatter, includes, among possible others, 1) mean
wind speed: 2) sea state dependence: 3) wave steepness:
4) full flow separation for strongly forced wind waves:
5) enhancement of sea drag due to wave breaking: 6) rising
and falling winds: 7) gustiness of the wind: 8) temperature
stratification 1in the atmospheric boundary layer: 9) swell;
10) non-linecar wind-wave interactions: 11) wave horizontal
skewness and vertical asymmetry: 12) variation of the wavy
surface properties at wave group and wavelength scales:;
13) wave directionality: 14) wave short-crestedness:
15) coupled effects in the air/sea boundary layers. The
I16th and separate item would be that due to peculiarities
of air-sea iInteraction at extreme wind-forcing conditions
which include an entire set of new features i1rrelevant at
moderate winds as mentioned above. In this list, we do not
mention properties and processes which breach validity of
the constant-flux-layer approximation, as in such circum-
stances the notion of the drag coefficient (1) becomes
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Saturation of Sea Drag
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Powell, Vickery, Reinhold, 2003, Nature

e Extensive research field since
2003, dozens of papers

e field and laboratory
experiments

e theories:
- spray theories, 4 classes

- hydrodynamic theories, 2
classes

- turbulence theory: 2D
turbulence suppresses 3D
vortexes

- combination of those

Drag saturates at
U,=32-33m/s
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Spectrum growth rate y, LG measurements

figure 6
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méractions at extreme wind forcing

« at wind speeds U>32my/s, dynamics of the atmospheric
boundary layer, of the ocean wave surface and of the upper
ocean layer — all change

* sea drag saturates at U,,=32-33m/s above the surface

 cross-interface gas fluxes still grow, but at a slow rate if U,
> 35m/s, additional mechanisms become active below the
surface

 at the surface, wave asymmetry saturates at U,,~34m/s.
This indicates change of the wave breaking mechanism to
the direct wind forcing

« wave-induced mixing can substantially cool the surface
« wave spectra exhibit range of specific behaviours
« surface/wind relationships are substantially altered




